Введите задачу...
Основы мат. анализа Примеры
Этап 1
Преобразуем неравенство в уравнение.
Этап 2
Этап 2.1
Разложим на множители, используя теорему о рациональных корнях.
Этап 2.1.1
Если у многочленной функции целые коэффициенты, то каждый рациональный ноль будет иметь вид , где — делитель константы, а — делитель старшего коэффициента.
Этап 2.1.2
Найдем все комбинации . Это ― возможные корни многочлена.
Этап 2.1.3
Подставим и упростим выражение. В этом случае выражение равно , поэтому является корнем многочлена.
Этап 2.1.3.1
Подставим в многочлен.
Этап 2.1.3.2
Возведем в степень .
Этап 2.1.3.3
Умножим на .
Этап 2.1.3.4
Возведем в степень .
Этап 2.1.3.5
Умножим на .
Этап 2.1.3.6
Добавим и .
Этап 2.1.3.7
Умножим на .
Этап 2.1.3.8
Вычтем из .
Этап 2.1.3.9
Добавим и .
Этап 2.1.4
Поскольку — известный корень, разделим многочлен на , чтобы найти частное многочленов. Этот многочлен можно будет использовать, чтобы найти оставшиеся корни.
Этап 2.1.5
Разделим на .
Этап 2.1.5.1
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
- | + | - | + |
Этап 2.1.5.2
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
- | + | - | + |
Этап 2.1.5.3
Умножим новое частное на делитель.
- | + | - | + | ||||||||
+ | - |
Этап 2.1.5.4
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
- | + | - | + | ||||||||
- | + |
Этап 2.1.5.5
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
- | + | - | + | ||||||||
- | + | ||||||||||
+ |
Этап 2.1.5.6
Вынесем следующие члены из исходного делимого в текущее делимое.
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - |
Этап 2.1.5.7
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
+ | |||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - |
Этап 2.1.5.8
Умножим новое частное на делитель.
+ | |||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Этап 2.1.5.9
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
+ | |||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + |
Этап 2.1.5.10
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
+ | |||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- |
Этап 2.1.5.11
Вынесем следующие члены из исходного делимого в текущее делимое.
+ | |||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + |
Этап 2.1.5.12
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
+ | - | ||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + |
Этап 2.1.5.13
Умножим новое частное на делитель.
+ | - | ||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + | ||||||||||
- | + |
Этап 2.1.5.14
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
+ | - | ||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - |
Этап 2.1.5.15
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
+ | - | ||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
Этап 2.1.5.16
Поскольку остаток равен , окончательным ответом является частное.
Этап 2.1.6
Запишем в виде набора множителей.
Этап 2.2
Разложим на множители методом группировки
Этап 2.2.1
Разложим на множители методом группировки
Этап 2.2.1.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 2.2.1.1.1
Вынесем множитель из .
Этап 2.2.1.1.2
Запишем как плюс
Этап 2.2.1.1.3
Применим свойство дистрибутивности.
Этап 2.2.1.2
Вынесем наибольший общий делитель из каждой группы.
Этап 2.2.1.2.1
Сгруппируем первые два члена и последние два члена.
Этап 2.2.1.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 2.2.1.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 2.2.2
Избавимся от ненужных скобок.
Этап 3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4
Этап 4.1
Приравняем к .
Этап 4.2
Решим относительно .
Этап 4.2.1
Добавим к обеим частям уравнения.
Этап 4.2.2
Разделим каждый член на и упростим.
Этап 4.2.2.1
Разделим каждый член на .
Этап 4.2.2.2
Упростим левую часть.
Этап 4.2.2.2.1
Сократим общий множитель .
Этап 4.2.2.2.1.1
Сократим общий множитель.
Этап 4.2.2.2.1.2
Разделим на .
Этап 5
Этап 5.1
Приравняем к .
Этап 5.2
Решим относительно .
Этап 5.2.1
Добавим к обеим частям уравнения.
Этап 5.2.2
Разделим каждый член на и упростим.
Этап 5.2.2.1
Разделим каждый член на .
Этап 5.2.2.2
Упростим левую часть.
Этап 5.2.2.2.1
Сократим общий множитель .
Этап 5.2.2.2.1.1
Сократим общий множитель.
Этап 5.2.2.2.1.2
Разделим на .
Этап 6
Этап 6.1
Приравняем к .
Этап 6.2
Вычтем из обеих частей уравнения.
Этап 7
Окончательным решением являются все значения, при которых верно.
Этап 8
Используем каждый корень для создания контрольных интервалов.
Этап 9
Этап 9.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 9.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 9.1.2
Заменим на в исходном неравенстве.
Этап 9.1.3
Левая часть не больше правой части , значит, данное утверждение ложно.
Ложь
Ложь
Этап 9.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 9.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 9.2.2
Заменим на в исходном неравенстве.
Этап 9.2.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
Истина
Истина
Этап 9.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 9.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 9.3.2
Заменим на в исходном неравенстве.
Этап 9.3.3
Левая часть не больше правой части , значит, данное утверждение ложно.
Ложь
Ложь
Этап 9.4
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 9.4.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 9.4.2
Заменим на в исходном неравенстве.
Этап 9.4.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
Истина
Истина
Этап 9.5
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Ложь
Истина
Ложь
Истина
Ложь
Истина
Ложь
Истина
Этап 10
Решение состоит из всех истинных интервалов.
или
Этап 11
Преобразуем неравенство в интервальное представление.
Этап 12