Введите задачу...
Основы мат. анализа Примеры
Этап 1
Вычтем из обеих частей неравенства.
Этап 2
Этап 2.1
Разложим на множители, используя метод группировки.
Этап 2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.3
Умножим на .
Этап 2.4
Объединим числители над общим знаменателем.
Этап 2.5
Упростим числитель.
Этап 2.5.1
Применим свойство дистрибутивности.
Этап 2.5.2
Умножим на .
Этап 2.5.3
Вычтем из .
Этап 2.5.4
Добавим и .
Этап 2.6
Вынесем множитель из .
Этап 2.7
Перепишем в виде .
Этап 2.8
Вынесем множитель из .
Этап 2.9
Перепишем в виде .
Этап 2.10
Вынесем знак минуса перед дробью.
Этап 3
Найдем все значения, где выражение переменяет знак с отрицательного на положительный. Для этого приравняем каждый множитель к и решим.
Этап 4
Добавим к обеим частям уравнения.
Этап 5
Добавим к обеим частям уравнения.
Этап 6
Добавим к обеим частям уравнения.
Этап 7
Решим для каждого множителя, чтобы найти значения, при которых выражение абсолютного значения переходит от отрицательного значения к положительному.
Этап 8
Объединим решения.
Этап 9
Этап 9.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 9.2
Решим относительно .
Этап 9.2.1
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 9.2.2
Приравняем к , затем решим относительно .
Этап 9.2.2.1
Приравняем к .
Этап 9.2.2.2
Добавим к обеим частям уравнения.
Этап 9.2.3
Приравняем к , затем решим относительно .
Этап 9.2.3.1
Приравняем к .
Этап 9.2.3.2
Добавим к обеим частям уравнения.
Этап 9.2.4
Окончательным решением являются все значения, при которых верно.
Этап 9.3
Область определения ― это все значения , при которых выражение определено.
Этап 10
Используем каждый корень для создания контрольных интервалов.
Этап 11
Этап 11.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 11.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 11.1.2
Заменим на в исходном неравенстве.
Этап 11.1.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
Истина
Истина
Этап 11.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 11.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 11.2.2
Заменим на в исходном неравенстве.
Этап 11.2.3
Левая часть не больше правой части , значит, данное утверждение ложно.
Ложь
Ложь
Этап 11.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 11.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 11.3.2
Заменим на в исходном неравенстве.
Этап 11.3.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
Истина
Истина
Этап 11.4
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 11.4.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 11.4.2
Заменим на в исходном неравенстве.
Этап 11.4.3
Левая часть не больше правой части , значит, данное утверждение ложно.
Ложь
Ложь
Этап 11.5
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Истина
Ложь
Истина
Ложь
Истина
Ложь
Истина
Ложь
Этап 12
Решение состоит из всех истинных интервалов.
или
Этап 13
Преобразуем неравенство в интервальное представление.
Этап 14