Основы мат. анализа Примеры

Найти значения тригонометрических функций, используя тождества cos(theta)=2/3 , tan(theta)<0
,
Этап 1
Тангенс принимает отрицательные значения во втором и четвертом квадрантах. Косинус принимает положительные значения в первом и четвертом квадрантах. Множество решений для ограничивается четвертым квадрантом, так как это единственный квадрант, найденный в обоих множествах.
Решение находится в четвертом квадранте.
Этап 2
Воспользуемся определением косинуса, чтобы найти известные стороны прямоугольного треугольника, вписанного в единичную окружность. Квадрант определяет знак каждого значения.
Этап 3
Найдем противолежащую сторону треугольника в единичной окружности. Поскольку прилежащая сторона и гипотенуза известны, используем теорему Пифагора, чтобы найти оставшуюся сторону.
Этап 4
Заменим известные значения в уравнении.
Этап 5
Упростим подкоренное выражение.
Нажмите для увеличения количества этапов...
Этап 5.1
Изменим знак на противоположный.
Противоположный
Этап 5.2
Возведем в степень .
Противоположный
Этап 5.3
Возведем в степень .
Противоположный
Этап 5.4
Умножим на .
Противоположный
Этап 5.5
Вычтем из .
Противоположный
Противоположный
Этап 6
Найдем значение синуса.
Нажмите для увеличения количества этапов...
Этап 6.1
Воспользуемся определением синуса, чтобы найти значение .
Этап 6.2
Подставим известные значения.
Этап 6.3
Вынесем знак минуса перед дробью.
Этап 7
Найдем значение тангенса.
Нажмите для увеличения количества этапов...
Этап 7.1
Воспользуемся определением тангенса, чтобы найти значение .
Этап 7.2
Подставим известные значения.
Этап 7.3
Вынесем знак минуса перед дробью.
Этап 8
Найдем значение котангенса.
Нажмите для увеличения количества этапов...
Этап 8.1
Воспользуемся определением котангенса, чтобы найти значение .
Этап 8.2
Подставим известные значения.
Этап 8.3
Упростим значение .
Нажмите для увеличения количества этапов...
Этап 8.3.1
Вынесем знак минуса перед дробью.
Этап 8.3.2
Умножим на .
Этап 8.3.3
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 8.3.3.1
Умножим на .
Этап 8.3.3.2
Возведем в степень .
Этап 8.3.3.3
Возведем в степень .
Этап 8.3.3.4
Применим правило степени для объединения показателей.
Этап 8.3.3.5
Добавим и .
Этап 8.3.3.6
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 8.3.3.6.1
С помощью запишем в виде .
Этап 8.3.3.6.2
Применим правило степени и перемножим показатели, .
Этап 8.3.3.6.3
Объединим и .
Этап 8.3.3.6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.3.3.6.4.1
Сократим общий множитель.
Этап 8.3.3.6.4.2
Перепишем это выражение.
Этап 8.3.3.6.5
Найдем экспоненту.
Этап 9
Найдем значение секанса.
Нажмите для увеличения количества этапов...
Этап 9.1
Воспользуемся определением секанса, чтобы найти значение .
Этап 9.2
Подставим известные значения.
Этап 10
Найдем значение косеканса.
Нажмите для увеличения количества этапов...
Этап 10.1
Воспользуемся определением косеканса, чтобы найти значение .
Этап 10.2
Подставим известные значения.
Этап 10.3
Упростим значение .
Нажмите для увеличения количества этапов...
Этап 10.3.1
Вынесем знак минуса перед дробью.
Этап 10.3.2
Умножим на .
Этап 10.3.3
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 10.3.3.1
Умножим на .
Этап 10.3.3.2
Возведем в степень .
Этап 10.3.3.3
Возведем в степень .
Этап 10.3.3.4
Применим правило степени для объединения показателей.
Этап 10.3.3.5
Добавим и .
Этап 10.3.3.6
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 10.3.3.6.1
С помощью запишем в виде .
Этап 10.3.3.6.2
Применим правило степени и перемножим показатели, .
Этап 10.3.3.6.3
Объединим и .
Этап 10.3.3.6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 10.3.3.6.4.1
Сократим общий множитель.
Этап 10.3.3.6.4.2
Перепишем это выражение.
Этап 10.3.3.6.5
Найдем экспоненту.
Этап 11
Это решение для каждого тригонометрического значения.