Введите задачу...
Основы мат. анализа Примеры
Этап 1
Приравняем к .
Этап 2
Этап 2.1
Разложим левую часть уравнения на множители.
Этап 2.1.1
Вынесем наибольший общий делитель из каждой группы.
Этап 2.1.1.1
Сгруппируем первые два члена и последние два члена.
Этап 2.1.1.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 2.1.2
Разложим многочлен, вынеся наибольший общий делитель .
Этап 2.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.3
Приравняем к , затем решим относительно .
Этап 2.3.1
Приравняем к .
Этап 2.3.2
Решим относительно .
Этап 2.3.2.1
Добавим к обеим частям уравнения.
Этап 2.3.2.2
Разделим каждый член на и упростим.
Этап 2.3.2.2.1
Разделим каждый член на .
Этап 2.3.2.2.2
Упростим левую часть.
Этап 2.3.2.2.2.1
Сократим общий множитель .
Этап 2.3.2.2.2.1.1
Сократим общий множитель.
Этап 2.3.2.2.2.1.2
Разделим на .
Этап 2.4
Приравняем к , затем решим относительно .
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Решим относительно .
Этап 2.4.2.1
Добавим к обеим частям уравнения.
Этап 2.4.2.2
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 2.4.2.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2.4.2.3.1
Сначала с помощью положительного значения найдем первое решение.
Этап 2.4.2.3.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 2.4.2.3.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2.5
Окончательным решением являются все значения, при которых верно.
Этап 3
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Форма смешанных чисел:
Этап 4