Основы мат. анализа Примеры

Найти центр -x^2+4y^2+8x+16y-64=0
Этап 1
Найдем стандартную форму уравнения гиперболы.
Нажмите для увеличения количества этапов...
Этап 1.1
Добавим к обеим частям уравнения.
Этап 1.2
Составим полный квадрат для .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Применим форму , чтобы найти значения , и .
Этап 1.2.2
Рассмотрим параболу в форме с выделенной вершиной.
Этап 1.2.3
Найдем значение по формуле .
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Подставим значения и в формулу .
Этап 1.2.3.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.3.2.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.2.3.2.1.1
Вынесем множитель из .
Этап 1.2.3.2.1.2
Вынесем знак минуса из знаменателя .
Этап 1.2.3.2.2
Умножим на .
Этап 1.2.4
Найдем значение по формуле .
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Подставим значения , и в формулу .
Этап 1.2.4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.1.1
Возведем в степень .
Этап 1.2.4.2.1.2
Умножим на .
Этап 1.2.4.2.1.3
Разделим на .
Этап 1.2.4.2.1.4
Умножим на .
Этап 1.2.4.2.2
Добавим и .
Этап 1.2.5
Подставим значения , и в уравнение с заданной вершиной .
Этап 1.3
Подставим вместо в уравнение .
Этап 1.4
Перенесем в правую часть уравнения, прибавив к обеим частям.
Этап 1.5
Составим полный квадрат для .
Нажмите для увеличения количества этапов...
Этап 1.5.1
Применим форму , чтобы найти значения , и .
Этап 1.5.2
Рассмотрим параболу в форме с выделенной вершиной.
Этап 1.5.3
Найдем значение по формуле .
Нажмите для увеличения количества этапов...
Этап 1.5.3.1
Подставим значения и в формулу .
Этап 1.5.3.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.5.3.2.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.5.3.2.1.1
Вынесем множитель из .
Этап 1.5.3.2.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.5.3.2.1.2.1
Вынесем множитель из .
Этап 1.5.3.2.1.2.2
Сократим общий множитель.
Этап 1.5.3.2.1.2.3
Перепишем это выражение.
Этап 1.5.3.2.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.5.3.2.2.1
Вынесем множитель из .
Этап 1.5.3.2.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.5.3.2.2.2.1
Вынесем множитель из .
Этап 1.5.3.2.2.2.2
Сократим общий множитель.
Этап 1.5.3.2.2.2.3
Перепишем это выражение.
Этап 1.5.3.2.2.2.4
Разделим на .
Этап 1.5.4
Найдем значение по формуле .
Нажмите для увеличения количества этапов...
Этап 1.5.4.1
Подставим значения , и в формулу .
Этап 1.5.4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.5.4.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.5.4.2.1.1
Возведем в степень .
Этап 1.5.4.2.1.2
Умножим на .
Этап 1.5.4.2.1.3
Разделим на .
Этап 1.5.4.2.1.4
Умножим на .
Этап 1.5.4.2.2
Вычтем из .
Этап 1.5.5
Подставим значения , и в уравнение с заданной вершиной .
Этап 1.6
Подставим вместо в уравнение .
Этап 1.7
Перенесем в правую часть уравнения, прибавив к обеим частям.
Этап 1.8
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.8.1
Вычтем из .
Этап 1.8.2
Добавим и .
Этап 1.9
Разделим каждый член на , чтобы правая часть была равна единице.
Этап 1.10
Упростим каждый член уравнения, чтобы правая часть была равна . Стандартная форма уравнения эллипса или гиперболы требует, чтобы правая часть уравнения была равна .
Этап 2
Это формула гиперболы. Используем эту формулу для определения вершин и асимптот гиперболы.
Этап 3
Сопоставим параметры гиперболы со значениями в стандартной форме. Переменная представляет сдвиг по оси X от начала координат,  — сдвиг по оси Y от начала координат, .
Этап 4
Центр гиперболы имеет вид . Подставим значения и .
Этап 5