Основы мат. анализа Примеры

Этап 1
Перепишем уравнение в форме с выделенной вершиной.
Нажмите для увеличения количества этапов...
Этап 1.1
Изолируем в левой части уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Перепишем уравнение в виде .
Этап 1.1.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Разделим каждый член на .
Этап 1.1.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.1.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.2.2.1.1
Сократим общий множитель.
Этап 1.1.2.2.1.2
Перепишем это выражение.
Этап 1.1.2.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.2.2.2.1
Сократим общий множитель.
Этап 1.1.2.2.2.2
Разделим на .
Этап 1.1.3
Добавим к обеим частям уравнения.
Этап 1.1.4
Изменим порядок членов.
Этап 1.2
Составим полный квадрат для .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.2.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.2.1.1.1
Перепишем в виде .
Этап 1.2.1.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 1.2.1.1.2.1
Применим свойство дистрибутивности.
Этап 1.2.1.1.2.2
Применим свойство дистрибутивности.
Этап 1.2.1.1.2.3
Применим свойство дистрибутивности.
Этап 1.2.1.1.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 1.2.1.1.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.2.1.1.3.1.1
Умножим на .
Этап 1.2.1.1.3.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 1.2.1.1.3.1.2.1
Умножим на .
Этап 1.2.1.1.3.1.2.2
Умножим на .
Этап 1.2.1.1.3.1.2.3
Возведем в степень .
Этап 1.2.1.1.3.1.2.4
Возведем в степень .
Этап 1.2.1.1.3.1.2.5
Применим правило степени для объединения показателей.
Этап 1.2.1.1.3.1.2.6
Добавим и .
Этап 1.2.1.1.3.2
Перенесем .
Этап 1.2.1.1.3.3
Вычтем из .
Этап 1.2.1.1.4
Применим свойство дистрибутивности.
Этап 1.2.1.1.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.1.1.5.1
Объединим и .
Этап 1.2.1.1.5.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.1.1.5.2.1
Вынесем множитель из .
Этап 1.2.1.1.5.2.2
Вынесем множитель из .
Этап 1.2.1.1.5.2.3
Сократим общий множитель.
Этап 1.2.1.1.5.2.4
Перепишем это выражение.
Этап 1.2.1.1.5.3
Объединим и .
Этап 1.2.1.1.5.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.1.1.5.4.1
Вынесем множитель из .
Этап 1.2.1.1.5.4.2
Вынесем множитель из .
Этап 1.2.1.1.5.4.3
Сократим общий множитель.
Этап 1.2.1.1.5.4.4
Перепишем это выражение.
Этап 1.2.1.1.5.5
Объединим и .
Этап 1.2.1.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.2.1.3
Объединим и .
Этап 1.2.1.4
Объединим числители над общим знаменателем.
Этап 1.2.1.5
Добавим и .
Нажмите для увеличения количества этапов...
Этап 1.2.1.5.1
Изменим порядок и .
Этап 1.2.1.5.2
Добавим и .
Этап 1.2.2
Применим форму , чтобы найти значения , и .
Этап 1.2.3
Рассмотрим параболу в форме с выделенной вершиной.
Этап 1.2.4
Найдем значение по формуле .
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Подставим значения и в формулу .
Этап 1.2.4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.1
Умножим числитель на величину, обратную знаменателю.
Этап 1.2.4.2.2
Объединим и .
Этап 1.2.4.2.3
Сократим выражение путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.3.1
Вынесем множитель из .
Этап 1.2.4.2.3.2
Вынесем множитель из .
Этап 1.2.4.2.3.3
Сократим общий множитель.
Этап 1.2.4.2.3.4
Перепишем это выражение.
Этап 1.2.4.2.4
Умножим числитель на величину, обратную знаменателю.
Этап 1.2.4.2.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.5.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 1.2.4.2.5.2
Вынесем множитель из .
Этап 1.2.4.2.5.3
Сократим общий множитель.
Этап 1.2.4.2.5.4
Перепишем это выражение.
Этап 1.2.4.2.6
Умножим на .
Этап 1.2.5
Найдем значение по формуле .
Нажмите для увеличения количества этапов...
Этап 1.2.5.1
Подставим значения , и в формулу .
Этап 1.2.5.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.1.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.1.1.1
Применим правило умножения к .
Этап 1.2.5.2.1.1.2
Возведем в степень .
Этап 1.2.5.2.1.1.3
Применим правило умножения к .
Этап 1.2.5.2.1.1.4
Единица в любой степени равна единице.
Этап 1.2.5.2.1.1.5
Возведем в степень .
Этап 1.2.5.2.1.1.6
Умножим на .
Этап 1.2.5.2.1.2
Объединим и .
Этап 1.2.5.2.1.3
Сократим выражение путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.1.3.1
Сократим общий множитель.
Этап 1.2.5.2.1.3.2
Перепишем это выражение.
Этап 1.2.5.2.1.4
Умножим числитель на величину, обратную знаменателю.
Этап 1.2.5.2.1.5
Объединим и .
Этап 1.2.5.2.2
Объединим числители над общим знаменателем.
Этап 1.2.5.2.3
Вычтем из .
Этап 1.2.5.2.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.4.1
Сократим общий множитель.
Этап 1.2.5.2.4.2
Разделим на .
Этап 1.2.6
Подставим значения , и в уравнение с заданной вершиной .
Этап 1.3
Приравняем к новой правой части.
Этап 2
Воспользуемся формой с выделенной вершиной , чтобы определить значения , и .
Этап 3
Найдем вершину .
Этап 4