Введите задачу...
Основы мат. анализа Примеры
Этап 1
Чтобы уравнение было равносильным, аргументы логарифмов с обеих сторон уравнения должны быть равными.
Этап 2
Этап 2.1
Перенесем все члены с в левую часть уравнения.
Этап 2.1.1
Вычтем из обеих частей уравнения.
Этап 2.1.2
Вычтем из .
Этап 2.2
Вычтем из обеих частей уравнения.
Этап 2.3
Разложим на множители, используя метод группировки.
Этап 2.3.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 2.3.2
Запишем разложение на множители, используя данные целые числа.
Этап 2.4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.5
Приравняем к , затем решим относительно .
Этап 2.5.1
Приравняем к .
Этап 2.5.2
Добавим к обеим частям уравнения.
Этап 2.6
Приравняем к , затем решим относительно .
Этап 2.6.1
Приравняем к .
Этап 2.6.2
Вычтем из обеих частей уравнения.
Этап 2.7
Окончательным решением являются все значения, при которых верно.