Основы мат. анализа Примеры

Представить в полярных координатах (- квадратный корень из 6, квадратный корень из 2)
Этап 1
Преобразуем из прямоугольных координат в полярные , используя формулы перевода.
Этап 2
Заменим и фактическими значениями.
Этап 3
Найдем абсолютную величину полярной координаты.
Нажмите для увеличения количества этапов...
Этап 3.1
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Применим правило умножения к .
Этап 3.1.2
Возведем в степень .
Этап 3.1.3
Умножим на .
Этап 3.2
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 3.2.1
С помощью запишем в виде .
Этап 3.2.2
Применим правило степени и перемножим показатели, .
Этап 3.2.3
Объединим и .
Этап 3.2.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.4.1
Сократим общий множитель.
Этап 3.2.4.2
Перепишем это выражение.
Этап 3.2.5
Найдем экспоненту.
Этап 3.3
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 3.3.1
С помощью запишем в виде .
Этап 3.3.2
Применим правило степени и перемножим показатели, .
Этап 3.3.3
Объединим и .
Этап 3.3.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.4.1
Сократим общий множитель.
Этап 3.3.4.2
Перепишем это выражение.
Этап 3.3.5
Найдем экспоненту.
Этап 3.4
Добавим и .
Этап 3.5
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 3.5.1
Вынесем множитель из .
Этап 3.5.2
Перепишем в виде .
Этап 3.6
Вынесем члены из-под знака корня.
Этап 4
Заменим и фактическими значениями.
Этап 5
Обратная функция тангенса равна .
Этап 6
Это результат преобразования в полярные координаты в виде .