Основы мат. анализа Примеры

Trovare la Derivata Usando la Regola del Prodotto - d/dx y=(-2x^4+5x^2+4)(-3x^2+2)
Этап 1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2
По правилу суммы производная по имеет вид .
Этап 3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Умножим на .
Этап 4
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 4.1
Поскольку является константой относительно , производная относительно равна .
Этап 4.2
Добавим и .
Этап 4.3
По правилу суммы производная по имеет вид .
Этап 5
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 5.1
Поскольку является константой относительно , производная по равна .
Этап 5.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.3
Умножим на .
Этап 6
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 6.1
Поскольку является константой относительно , производная по равна .
Этап 6.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 6.3
Умножим на .
Этап 7
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 7.1
Поскольку является константой относительно , производная относительно равна .
Этап 7.2
Добавим и .
Этап 8
Упростим.
Нажмите для увеличения количества этапов...
Этап 8.1
Применим свойство дистрибутивности.
Этап 8.2
Применим свойство дистрибутивности.
Этап 8.3
Применим свойство дистрибутивности.
Этап 8.4
Применим свойство дистрибутивности.
Этап 8.5
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 8.5.1
Умножим на .
Этап 8.5.2
Возведем в степень .
Этап 8.5.3
Применим правило степени для объединения показателей.
Этап 8.5.4
Добавим и .
Этап 8.5.5
Умножим на .
Этап 8.5.6
Возведем в степень .
Этап 8.5.7
Применим правило степени для объединения показателей.
Этап 8.5.8
Добавим и .
Этап 8.5.9
Умножим на .
Этап 8.5.10
Умножим на .
Этап 8.5.11
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 8.5.11.1
Перенесем .
Этап 8.5.11.2
Применим правило степени для объединения показателей.
Этап 8.5.11.3
Добавим и .
Этап 8.5.12
Умножим на .
Этап 8.5.13
Умножим на .
Этап 8.5.14
Возведем в степень .
Этап 8.5.15
Применим правило степени для объединения показателей.
Этап 8.5.16
Добавим и .
Этап 8.5.17
Умножим на .
Этап 8.5.18
Вычтем из .
Этап 8.5.19
Добавим и .
Этап 8.5.20
Вычтем из .
Этап 8.5.21
Добавим и .