Введите задачу...
Основы мат. анализа Примеры
Этап 1
Вычтем из обеих частей неравенства.
Этап 2
Этап 2.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 2.3.1
Умножим на .
Этап 2.3.2
Умножим на .
Этап 2.3.3
Изменим порядок множителей в .
Этап 2.4
Объединим числители над общим знаменателем.
Этап 2.5
Упростим числитель.
Этап 2.5.1
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 2.5.1.1
Применим свойство дистрибутивности.
Этап 2.5.1.2
Применим свойство дистрибутивности.
Этап 2.5.1.3
Применим свойство дистрибутивности.
Этап 2.5.2
Упростим и объединим подобные члены.
Этап 2.5.2.1
Упростим каждый член.
Этап 2.5.2.1.1
Умножим на .
Этап 2.5.2.1.2
Перенесем влево от .
Этап 2.5.2.1.3
Перепишем в виде .
Этап 2.5.2.1.4
Умножим на .
Этап 2.5.2.2
Вычтем из .
Этап 2.5.3
Применим свойство дистрибутивности.
Этап 2.5.4
Умножим на .
Этап 2.5.5
Вычтем из .
Этап 2.5.6
Вычтем из .
Этап 2.5.7
Разложим на множители, используя метод группировки.
Этап 2.5.7.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 2.5.7.2
Запишем разложение на множители, используя данные целые числа.
Этап 3
Найдем все значения, где выражение переменяет знак с отрицательного на положительный. Для этого приравняем каждый множитель к и решим.
Этап 4
Добавим к обеим частям уравнения.
Этап 5
Вычтем из обеих частей уравнения.
Этап 6
Вычтем из обеих частей уравнения.
Этап 7
Добавим к обеим частям уравнения.
Этап 8
Решим для каждого множителя, чтобы найти значения, при которых выражение абсолютного значения переходит от отрицательного значения к положительному.
Этап 9
Объединим решения.
Этап 10
Этап 10.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 10.2
Решим относительно .
Этап 10.2.1
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 10.2.2
Приравняем к , затем решим относительно .
Этап 10.2.2.1
Приравняем к .
Этап 10.2.2.2
Вычтем из обеих частей уравнения.
Этап 10.2.3
Приравняем к , затем решим относительно .
Этап 10.2.3.1
Приравняем к .
Этап 10.2.3.2
Добавим к обеим частям уравнения.
Этап 10.2.4
Окончательным решением являются все значения, при которых верно.
Этап 10.3
Область определения ― это все значения , при которых выражение определено.
Этап 11
Используем каждый корень для создания контрольных интервалов.
Этап 12
Этап 12.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 12.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 12.1.2
Заменим на в исходном неравенстве.
Этап 12.1.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 12.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 12.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 12.2.2
Заменим на в исходном неравенстве.
Этап 12.2.3
Левая часть меньше правой части , значит, данное утверждение ложно.
False
False
Этап 12.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 12.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 12.3.2
Заменим на в исходном неравенстве.
Этап 12.3.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 12.4
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 12.4.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 12.4.2
Заменим на в исходном неравенстве.
Этап 12.4.3
Левая часть меньше правой части , значит, данное утверждение ложно.
False
False
Этап 12.5
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 12.5.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 12.5.2
Заменим на в исходном неравенстве.
Этап 12.5.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 12.6
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Истина
Ложь
Истина
Ложь
Истина
Истина
Ложь
Истина
Ложь
Истина
Этап 13
Решение состоит из всех истинных интервалов.
или или
Этап 14
Преобразуем неравенство в интервальное представление.
Этап 15