Введите задачу...
Основы мат. анализа Примеры
Этап 1
Этап 1.1
Чтобы найти точки пересечения с осью x, подставим вместо и найдем решение для .
Этап 1.2
Решим уравнение.
Этап 1.2.1
Перепишем уравнение в виде .
Этап 1.2.2
Разложим левую часть уравнения на множители.
Этап 1.2.2.1
Перегруппируем члены.
Этап 1.2.2.2
Вынесем множитель из .
Этап 1.2.2.2.1
Вынесем множитель из .
Этап 1.2.2.2.2
Вынесем множитель из .
Этап 1.2.2.2.3
Вынесем множитель из .
Этап 1.2.2.3
Перепишем в виде .
Этап 1.2.2.4
Пусть . Подставим вместо для всех.
Этап 1.2.2.5
Разложим на множители, используя метод группировки.
Этап 1.2.2.5.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 1.2.2.5.2
Запишем разложение на множители, используя данные целые числа.
Этап 1.2.2.6
Заменим все вхождения на .
Этап 1.2.2.7
Вынесем множитель из .
Этап 1.2.2.7.1
Вынесем множитель из .
Этап 1.2.2.7.2
Вынесем множитель из .
Этап 1.2.2.7.3
Вынесем множитель из .
Этап 1.2.2.8
Пусть . Подставим вместо для всех.
Этап 1.2.2.9
Разложим на множители, используя метод группировки.
Этап 1.2.2.9.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 1.2.2.9.2
Запишем разложение на множители, используя данные целые числа.
Этап 1.2.2.10
Разложим на множители.
Этап 1.2.2.10.1
Заменим все вхождения на .
Этап 1.2.2.10.2
Избавимся от ненужных скобок.
Этап 1.2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 1.2.4
Приравняем к , затем решим относительно .
Этап 1.2.4.1
Приравняем к .
Этап 1.2.4.2
Решим относительно .
Этап 1.2.4.2.1
Добавим к обеим частям уравнения.
Этап 1.2.4.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 1.2.4.2.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 1.2.4.2.3.1
Сначала с помощью положительного значения найдем первое решение.
Этап 1.2.4.2.3.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 1.2.4.2.3.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 1.2.5
Приравняем к , затем решим относительно .
Этап 1.2.5.1
Приравняем к .
Этап 1.2.5.2
Добавим к обеим частям уравнения.
Этап 1.2.6
Приравняем к , затем решим относительно .
Этап 1.2.6.1
Приравняем к .
Этап 1.2.6.2
Вычтем из обеих частей уравнения.
Этап 1.2.7
Окончательным решением являются все значения, при которых верно.
Этап 1.3
Точки пересечения с осью x в форме точки.
точки пересечения с осью x:
точки пересечения с осью x:
Этап 2
Этап 2.1
Чтобы найти точки пересечения с осью y, подставим вместо и найдем решение для .
Этап 2.2
Решим уравнение.
Этап 2.2.1
Избавимся от скобок.
Этап 2.2.2
Избавимся от скобок.
Этап 2.2.3
Избавимся от скобок.
Этап 2.2.4
Избавимся от скобок.
Этап 2.2.5
Упростим .
Этап 2.2.5.1
Упростим каждый член.
Этап 2.2.5.1.1
Возведение в любую положительную степень дает .
Этап 2.2.5.1.2
Возведение в любую положительную степень дает .
Этап 2.2.5.1.3
Умножим на .
Этап 2.2.5.1.4
Возведение в любую положительную степень дает .
Этап 2.2.5.1.5
Умножим на .
Этап 2.2.5.1.6
Умножим на .
Этап 2.2.5.2
Упростим путем добавления чисел.
Этап 2.2.5.2.1
Добавим и .
Этап 2.2.5.2.2
Добавим и .
Этап 2.2.5.2.3
Добавим и .
Этап 2.2.5.2.4
Добавим и .
Этап 2.3
Точки пересечения с осью y в форме точки.
Точки пересечения с осью y:
Точки пересечения с осью y:
Этап 3
Перечислим пересечения.
точки пересечения с осью x:
Точки пересечения с осью y:
Этап 4