Введите задачу...
Основы мат. анализа Примеры
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в квадрат.
Этап 3
Этап 3.1
С помощью запишем в виде .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Упростим .
Этап 3.2.1.1
Перемножим экспоненты в .
Этап 3.2.1.1.1
Применим правило степени и перемножим показатели, .
Этап 3.2.1.1.2
Сократим общий множитель .
Этап 3.2.1.1.2.1
Сократим общий множитель.
Этап 3.2.1.1.2.2
Перепишем это выражение.
Этап 3.2.1.2
Упростим.
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Упростим .
Этап 3.3.1.1
Перепишем в виде .
Этап 3.3.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 3.3.1.2.1
Применим свойство дистрибутивности.
Этап 3.3.1.2.2
Применим свойство дистрибутивности.
Этап 3.3.1.2.3
Применим свойство дистрибутивности.
Этап 3.3.1.3
Упростим и объединим подобные члены.
Этап 3.3.1.3.1
Упростим каждый член.
Этап 3.3.1.3.1.1
Умножим .
Этап 3.3.1.3.1.1.1
Возведем в степень .
Этап 3.3.1.3.1.1.2
Возведем в степень .
Этап 3.3.1.3.1.1.3
Применим правило степени для объединения показателей.
Этап 3.3.1.3.1.1.4
Добавим и .
Этап 3.3.1.3.1.2
Перепишем в виде .
Этап 3.3.1.3.1.2.1
С помощью запишем в виде .
Этап 3.3.1.3.1.2.2
Применим правило степени и перемножим показатели, .
Этап 3.3.1.3.1.2.3
Объединим и .
Этап 3.3.1.3.1.2.4
Сократим общий множитель .
Этап 3.3.1.3.1.2.4.1
Сократим общий множитель.
Этап 3.3.1.3.1.2.4.2
Перепишем это выражение.
Этап 3.3.1.3.1.2.5
Упростим.
Этап 3.3.1.3.1.3
Перенесем влево от .
Этап 3.3.1.3.1.4
Перепишем в виде .
Этап 3.3.1.3.1.5
Перепишем в виде .
Этап 3.3.1.3.1.6
Умножим на .
Этап 3.3.1.3.2
Добавим и .
Этап 3.3.1.3.3
Вычтем из .
Этап 4
Этап 4.1
Перепишем уравнение в виде .
Этап 4.2
Перенесем все члены без в правую часть уравнения.
Этап 4.2.1
Вычтем из обеих частей уравнения.
Этап 4.2.2
Добавим к обеим частям уравнения.
Этап 4.2.3
Объединим противоположные члены в .
Этап 4.2.3.1
Добавим и .
Этап 4.2.3.2
Добавим и .
Этап 4.2.4
Вычтем из .
Этап 5
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в квадрат.
Этап 6
Этап 6.1
С помощью запишем в виде .
Этап 6.2
Упростим левую часть.
Этап 6.2.1
Упростим .
Этап 6.2.1.1
Применим правило умножения к .
Этап 6.2.1.2
Возведем в степень .
Этап 6.2.1.3
Перемножим экспоненты в .
Этап 6.2.1.3.1
Применим правило степени и перемножим показатели, .
Этап 6.2.1.3.2
Сократим общий множитель .
Этап 6.2.1.3.2.1
Сократим общий множитель.
Этап 6.2.1.3.2.2
Перепишем это выражение.
Этап 6.2.1.4
Упростим.
Этап 6.2.1.5
Применим свойство дистрибутивности.
Этап 6.2.1.6
Умножим.
Этап 6.2.1.6.1
Умножим на .
Этап 6.2.1.6.2
Умножим на .
Этап 6.3
Упростим правую часть.
Этап 6.3.1
Возведем в степень .
Этап 7
Этап 7.1
Перенесем все члены без в правую часть уравнения.
Этап 7.1.1
Вычтем из обеих частей уравнения.
Этап 7.1.2
Вычтем из .
Этап 7.2
Разделим каждый член на и упростим.
Этап 7.2.1
Разделим каждый член на .
Этап 7.2.2
Упростим левую часть.
Этап 7.2.2.1
Сократим общий множитель .
Этап 7.2.2.1.1
Сократим общий множитель.
Этап 7.2.2.1.2
Разделим на .
Этап 7.2.3
Упростим правую часть.
Этап 7.2.3.1
Разделим на .