Введите задачу...
Основы мат. анализа Примеры
Этап 1
Этап 1.1
Вынесем множитель из .
Этап 1.1.1
Вынесем множитель из .
Этап 1.1.2
Вынесем множитель из .
Этап 1.1.3
Вынесем множитель из .
Этап 1.2
Для каждого множителя в знаменателе создадим новую дробь, используя множитель в качестве знаменателя, а неизвестное значение — в качестве числителя. Поскольку множитель в знаменателе линейный, поместим одну переменную на его место .
Этап 1.3
Для каждого множителя в знаменателе создадим новую дробь, используя множитель в качестве знаменателя, а неизвестное значение — в качестве числителя. Поскольку множитель в знаменателе линейный, поместим одну переменную на его место .
Этап 1.4
Умножим каждую дробь в уравнении на знаменатель исходного выражения. В этом случае знаменатель равен .
Этап 1.5
Сократим общий множитель .
Этап 1.5.1
Сократим общий множитель.
Этап 1.5.2
Перепишем это выражение.
Этап 1.6
Сократим общий множитель .
Этап 1.6.1
Сократим общий множитель.
Этап 1.6.2
Разделим на .
Этап 1.7
Применим свойство дистрибутивности.
Этап 1.8
Умножим.
Этап 1.8.1
Умножим на .
Этап 1.8.2
Умножим на .
Этап 1.9
Упростим каждый член.
Этап 1.9.1
Сократим общий множитель .
Этап 1.9.1.1
Сократим общий множитель.
Этап 1.9.1.2
Разделим на .
Этап 1.9.2
Применим свойство дистрибутивности.
Этап 1.9.3
Перепишем, используя свойство коммутативности умножения.
Этап 1.9.4
Перенесем влево от .
Этап 1.9.5
Перепишем в виде .
Этап 1.9.6
Сократим общий множитель .
Этап 1.9.6.1
Сократим общий множитель.
Этап 1.9.6.2
Разделим на .
Этап 1.9.7
Применим свойство дистрибутивности.
Этап 1.9.8
Перенесем влево от .
Этап 1.10
Упростим выражение.
Этап 1.10.1
Перенесем .
Этап 1.10.2
Изменим порядок и .
Этап 1.10.3
Перенесем .
Этап 2
Этап 2.1
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты из каждой части уравнения. Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 2.2
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты членов, не содержащих . Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 2.3
Составим систему уравнений, чтобы найти коэффициенты элементарных дробей.
Этап 3
Этап 3.1
Решим относительно в .
Этап 3.1.1
Перепишем уравнение в виде .
Этап 3.1.2
Вычтем из обеих частей уравнения.
Этап 3.2
Заменим все вхождения на во всех уравнениях.
Этап 3.2.1
Заменим все вхождения в на .
Этап 3.2.2
Упростим правую часть.
Этап 3.2.2.1
Упростим .
Этап 3.2.2.1.1
Упростим каждый член.
Этап 3.2.2.1.1.1
Перепишем в виде .
Этап 3.2.2.1.1.2
Применим свойство дистрибутивности.
Этап 3.2.2.1.1.3
Умножим на .
Этап 3.2.2.1.1.4
Умножим на .
Этап 3.2.2.1.2
Вычтем из .
Этап 3.3
Решим относительно в .
Этап 3.3.1
Перепишем уравнение в виде .
Этап 3.3.2
Перенесем все члены без в правую часть уравнения.
Этап 3.3.2.1
Вычтем из обеих частей уравнения.
Этап 3.3.2.2
Вычтем из .
Этап 3.3.3
Разделим каждый член на и упростим.
Этап 3.3.3.1
Разделим каждый член на .
Этап 3.3.3.2
Упростим левую часть.
Этап 3.3.3.2.1
Сократим общий множитель .
Этап 3.3.3.2.1.1
Сократим общий множитель.
Этап 3.3.3.2.1.2
Разделим на .
Этап 3.3.3.3
Упростим правую часть.
Этап 3.3.3.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 3.4
Заменим все вхождения на во всех уравнениях.
Этап 3.4.1
Заменим все вхождения в на .
Этап 3.4.2
Упростим правую часть.
Этап 3.4.2.1
Упростим .
Этап 3.4.2.1.1
Упростим каждый член.
Этап 3.4.2.1.1.1
Умножим .
Этап 3.4.2.1.1.1.1
Объединим и .
Этап 3.4.2.1.1.1.2
Умножим на .
Этап 3.4.2.1.1.2
Вынесем знак минуса перед дробью.
Этап 3.4.2.1.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.4.2.1.3
Объединим и .
Этап 3.4.2.1.4
Объединим числители над общим знаменателем.
Этап 3.4.2.1.5
Упростим числитель.
Этап 3.4.2.1.5.1
Умножим на .
Этап 3.4.2.1.5.2
Вычтем из .
Этап 3.5
Перечислим все решения.
Этап 4
Заменим каждый коэффициент элементарной дроби в значениями, найденными для и .