Основы мат. анализа Примеры

Определить корни (нули) x^3+7x^2+14x+8
Этап 1
Приравняем к .
Этап 2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Перегруппируем члены.
Этап 2.1.2
Перепишем в виде .
Этап 2.1.3
Поскольку оба члена являются полными кубами, выполним разложение на множители, используя формулу суммы кубов, , где и .
Этап 2.1.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.1.4.1
Умножим на .
Этап 2.1.4.2
Возведем в степень .
Этап 2.1.5
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.1.5.1
Вынесем множитель из .
Этап 2.1.5.2
Вынесем множитель из .
Этап 2.1.5.3
Вынесем множитель из .
Этап 2.1.6
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.1.6.1
Вынесем множитель из .
Этап 2.1.6.2
Вынесем множитель из .
Этап 2.1.7
Добавим и .
Этап 2.1.8
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 2.1.8.1
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 2.1.8.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 2.1.8.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 2.1.8.2
Избавимся от ненужных скобок.
Этап 2.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Приравняем к .
Этап 2.3.2
Вычтем из обеих частей уравнения.
Этап 2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Вычтем из обеих частей уравнения.
Этап 2.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.5.1
Приравняем к .
Этап 2.5.2
Вычтем из обеих частей уравнения.
Этап 2.6
Окончательным решением являются все значения, при которых верно.
Этап 3