Введите задачу...
Основы мат. анализа Примеры
Этап 1
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Вычтем из .
Этап 2
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в куб.
Этап 3
Этап 3.1
С помощью запишем в виде .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Упростим .
Этап 3.2.1.1
Применим правило умножения к .
Этап 3.2.1.2
Возведем в степень .
Этап 3.2.1.3
Перемножим экспоненты в .
Этап 3.2.1.3.1
Применим правило степени и перемножим показатели, .
Этап 3.2.1.3.2
Сократим общий множитель .
Этап 3.2.1.3.2.1
Сократим общий множитель.
Этап 3.2.1.3.2.2
Перепишем это выражение.
Этап 3.2.1.4
Упростим.
Этап 3.2.1.5
Применим свойство дистрибутивности.
Этап 3.2.1.6
Умножим.
Этап 3.2.1.6.1
Умножим на .
Этап 3.2.1.6.2
Умножим на .
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Возведем в степень .
Этап 4
Этап 4.1
Перенесем все члены без в правую часть уравнения.
Этап 4.1.1
Добавим к обеим частям уравнения.
Этап 4.1.2
Добавим и .
Этап 4.2
Разделим каждый член на и упростим.
Этап 4.2.1
Разделим каждый член на .
Этап 4.2.2
Упростим левую часть.
Этап 4.2.2.1
Сократим общий множитель .
Этап 4.2.2.1.1
Сократим общий множитель.
Этап 4.2.2.1.2
Разделим на .
Этап 4.2.3
Упростим правую часть.
Этап 4.2.3.1
Сократим общий множитель и .
Этап 4.2.3.1.1
Вынесем множитель из .
Этап 4.2.3.1.2
Сократим общие множители.
Этап 4.2.3.1.2.1
Вынесем множитель из .
Этап 4.2.3.1.2.2
Сократим общий множитель.
Этап 4.2.3.1.2.3
Перепишем это выражение.
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: