Введите задачу...
Основы мат. анализа Примеры
Этап 1
Найдем все значения, где выражение переменяет знак с отрицательного на положительный. Для этого приравняем каждый множитель к и решим.
Этап 2
Этап 2.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 2.2
Запишем разложение на множители, используя данные целые числа.
Этап 3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4
Этап 4.1
Приравняем к .
Этап 4.2
Добавим к обеим частям уравнения.
Этап 5
Этап 5.1
Приравняем к .
Этап 5.2
Вычтем из обеих частей уравнения.
Этап 6
Окончательным решением являются все значения, при которых верно.
Этап 7
Добавим к обеим частям уравнения.
Этап 8
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 9
Этап 9.1
Перепишем в виде .
Этап 9.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 10
Этап 10.1
Сначала с помощью положительного значения найдем первое решение.
Этап 10.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 10.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 11
Решим для каждого множителя, чтобы найти значения, при которых выражение абсолютного значения переходит от отрицательного значения к положительному.
Этап 12
Объединим решения.
Этап 13
Этап 13.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 13.2
Решим относительно .
Этап 13.2.1
Добавим к обеим частям уравнения.
Этап 13.2.2
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 13.2.3
Упростим .
Этап 13.2.3.1
Перепишем в виде .
Этап 13.2.3.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 13.2.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 13.2.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 13.2.4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 13.2.4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 13.3
Область определения ― это все значения , при которых выражение определено.
Этап 14
Используем каждый корень для создания контрольных интервалов.
Этап 15
Этап 15.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 15.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 15.1.2
Заменим на в исходном неравенстве.
Этап 15.1.3
Левая часть не меньше правой части , значит, данное утверждение ложно.
Ложь
Ложь
Этап 15.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 15.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 15.2.2
Заменим на в исходном неравенстве.
Этап 15.2.3
Левая часть не меньше правой части , значит, данное утверждение ложно.
Ложь
Ложь
Этап 15.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 15.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 15.3.2
Заменим на в исходном неравенстве.
Этап 15.3.3
Левая часть меньше правой части , значит, данное утверждение всегда истинно.
Истина
Истина
Этап 15.4
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 15.4.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 15.4.2
Заменим на в исходном неравенстве.
Этап 15.4.3
Левая часть не меньше правой части , значит, данное утверждение ложно.
Ложь
Ложь
Этап 15.5
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Ложь
Ложь
Истина
Ложь
Ложь
Ложь
Истина
Ложь
Этап 16
Решение состоит из всех истинных интервалов.
Этап 17
Преобразуем неравенство в интервальное представление.
Этап 18