Введите задачу...
Основы мат. анализа Примеры
Этап 1
Производная по равна .
Этап 2
Производная по равна .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 5
Этап 5.1
Точное значение : .
Этап 6
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 7
Этап 7.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 7.2
Объединим дроби.
Этап 7.2.1
Объединим и .
Этап 7.2.2
Объединим числители над общим знаменателем.
Этап 7.3
Упростим числитель.
Этап 7.3.1
Умножим на .
Этап 7.3.2
Вычтем из .
Этап 8
Решение уравнения .
Этап 9
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 10
Этап 10.1
Точное значение : .
Этап 10.2
Умножим на .
Этап 11
— локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
— локальный максимум
Этап 12
Этап 12.1
Заменим в этом выражении переменную на .
Этап 12.2
Упростим результат.
Этап 12.2.1
Точное значение : .
Этап 12.2.2
Окончательный ответ: .
Этап 13
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 14
Этап 14.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как синус отрицательный в четвертом квадранте.
Этап 14.2
Точное значение : .
Этап 14.3
Умножим .
Этап 14.3.1
Умножим на .
Этап 14.3.2
Умножим на .
Этап 15
— локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
— локальный минимум
Этап 16
Этап 16.1
Заменим в этом выражении переменную на .
Этап 16.2
Упростим результат.
Этап 16.2.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как синус отрицательный в четвертом квадранте.
Этап 16.2.2
Точное значение : .
Этап 16.2.3
Умножим на .
Этап 16.2.4
Окончательный ответ: .
Этап 17
Это локальные экстремумы .
— локальный максимум
— локальный минимум
Этап 18