Введите задачу...
Основы мат. анализа Примеры
Этап 1
Запишем в виде уравнения.
Этап 2
Поменяем переменные местами.
Этап 3
Этап 3.1
Перепишем уравнение в виде .
Этап 3.2
Упростим .
Этап 3.2.1
Упростим каждый член.
Этап 3.2.1.1
Применим свойство дистрибутивности.
Этап 3.2.1.2
Умножим на .
Этап 3.2.2
Вычтем из .
Этап 3.3
Добавим к обеим частям уравнения.
Этап 3.4
Разделим каждый член на и упростим.
Этап 3.4.1
Разделим каждый член на .
Этап 3.4.2
Упростим левую часть.
Этап 3.4.2.1
Сократим общий множитель .
Этап 3.4.2.1.1
Сократим общий множитель.
Этап 3.4.2.1.2
Разделим на .
Этап 3.4.3
Упростим правую часть.
Этап 3.4.3.1
Упростим каждый член.
Этап 3.4.3.1.1
Умножим на .
Этап 3.4.3.1.2
Вынесем множитель из .
Этап 3.4.3.1.3
Разделим дроби.
Этап 3.4.3.1.4
Разделим на .
Этап 3.4.3.1.5
Разделим на .
Этап 3.4.3.1.6
Разделим на .
Этап 4
Replace with to show the final answer.
Этап 5
Этап 5.1
Чтобы подтвердить обратную, проверим выполнение условий и .
Этап 5.2
Найдем значение .
Этап 5.2.1
Представим результирующую суперпозицию функций.
Этап 5.2.2
Найдем значение , подставив значение в .
Этап 5.2.3
Упростим каждый член.
Этап 5.2.3.1
Упростим каждый член.
Этап 5.2.3.1.1
Применим свойство дистрибутивности.
Этап 5.2.3.1.2
Умножим на .
Этап 5.2.3.2
Вычтем из .
Этап 5.2.3.3
Применим свойство дистрибутивности.
Этап 5.2.3.4
Умножим на .
Этап 5.2.3.5
Умножим на .
Этап 5.2.4
Добавим и .
Этап 5.3
Найдем значение .
Этап 5.3.1
Представим результирующую суперпозицию функций.
Этап 5.3.2
Найдем значение , подставив значение в .
Этап 5.3.3
Упростим каждый член.
Этап 5.3.3.1
Вычтем из .
Этап 5.3.3.2
Применим свойство дистрибутивности.
Этап 5.3.3.3
Умножим на .
Этап 5.3.3.4
Умножим на .
Этап 5.3.4
Упростим путем вычитания чисел.
Этап 5.3.4.1
Вычтем из .
Этап 5.3.4.2
Добавим и .
Этап 5.4
Так как и , то — обратная к .