Основы мат. анализа Примеры

Найти асимптоты y=tan(x+pi/2)
Этап 1
Вертикальные асимптоты функции находятся в точках , где  — целое число. Используя основной период для , найдем вертикальные асимптоты для . Положив аргумент тангенса, , равным в выражении , найдем положение вертикальной асимптоты для .
Этап 2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Вычтем из обеих частей уравнения.
Этап 2.2
Объединим числители над общим знаменателем.
Этап 2.3
Вычтем из .
Этап 2.4
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 2.4.1
Вынесем множитель из .
Этап 2.4.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.4.2.1
Вынесем множитель из .
Этап 2.4.2.2
Сократим общий множитель.
Этап 2.4.2.3
Перепишем это выражение.
Этап 2.4.2.4
Разделим на .
Этап 3
Приравняем аргумент функции тангенса к .
Этап 4
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.1
Вычтем из обеих частей уравнения.
Этап 4.2
Объединим числители над общим знаменателем.
Этап 4.3
Вычтем из .
Этап 4.4
Разделим на .
Этап 5
Основной период находится на промежутке , где и являются вертикальными асимптотами.
Этап 6
Найдем период , чтобы найти, где находятся вертикальные асимптоты.
Нажмите для увеличения количества этапов...
Этап 6.1
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 6.2
Разделим на .
Этап 7
Вертикальные асимптоты находятся в точках , и в каждой точке , где  ― целое число.
Этап 8
У тангенса есть только вертикальные асимптоты.
Нет горизонтальных асимптот
Нет наклонных асимптот
Вертикальные асимптоты: , где  — целое число
Этап 9