Введите задачу...
Основы мат. анализа Примеры
Этап 1
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2
Этап 2.1
Приравняем к .
Этап 2.2
Решим относительно .
Этап 2.2.1
Приравняем к .
Этап 2.2.2
Решим относительно .
Этап 2.2.2.1
Вычтем из обеих частей уравнения.
Этап 2.2.2.2
Разделим каждый член на и упростим.
Этап 2.2.2.2.1
Разделим каждый член на .
Этап 2.2.2.2.2
Упростим левую часть.
Этап 2.2.2.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 2.2.2.2.2.2
Разделим на .
Этап 2.2.2.2.3
Упростим правую часть.
Этап 2.2.2.2.3.1
Разделим на .
Этап 3
Этап 3.1
Приравняем к .
Этап 3.2
Добавим к обеим частям уравнения.
Этап 4
Окончательным решением являются все значения, при которых верно.
Этап 5
Используем каждый корень для создания контрольных интервалов.
Этап 6
Этап 6.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 6.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 6.1.2
Заменим на в исходном неравенстве.
Этап 6.1.3
Левая часть меньше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 6.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 6.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 6.2.2
Заменим на в исходном неравенстве.
Этап 6.2.3
Левая часть меньше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 6.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 6.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 6.3.2
Заменим на в исходном неравенстве.
Этап 6.3.3
Левая часть не меньше правой части , значит, данное утверждение ложно.
False
False
Этап 6.4
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Истина
Истина
Ложь
Истина
Истина
Ложь
Этап 7
Решение состоит из всех истинных интервалов.
или
Этап 8
Преобразуем неравенство в интервальное представление.
Этап 9