Основы мат. анализа Примеры

Преобразовать к интервальному виду 4x^4-25x^2+36<=0
Этап 1
Подставим в уравнение. Это упростит использование формулы для корней квадратного уравнения.
Этап 2
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 2.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Вынесем множитель из .
Этап 2.1.2
Запишем как плюс
Этап 2.1.3
Применим свойство дистрибутивности.
Этап 2.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Сгруппируем первые два члена и последние два члена.
Этап 2.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 2.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Приравняем к .
Этап 4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Добавим к обеим частям уравнения.
Этап 4.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Разделим каждый член на .
Этап 4.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.2.2.1.1
Сократим общий множитель.
Этап 4.2.2.2.1.2
Разделим на .
Этап 5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Приравняем к .
Этап 5.2
Добавим к обеим частям уравнения.
Этап 6
Окончательным решением являются все значения, при которых верно.
Этап 7
Подставим вещественное значение обратно в решенное уравнение.
Этап 8
Решим первое уравнение относительно .
Этап 9
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 9.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 9.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 9.2.1
Перепишем в виде .
Этап 9.2.2
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 9.2.2.1
Перепишем в виде .
Этап 9.2.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 9.2.3
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 9.2.3.1
Перепишем в виде .
Этап 9.2.3.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 9.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 9.3.1
Сначала с помощью положительного значения найдем первое решение.
Этап 9.3.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 9.3.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 10
Решим второе уравнение относительно .
Этап 11
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 11.1
Избавимся от скобок.
Этап 11.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 11.3
Упростим .
Нажмите для увеличения количества этапов...
Этап 11.3.1
Перепишем в виде .
Этап 11.3.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 11.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 11.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 11.4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 11.4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 12
Решением является .
Этап 13
Используем каждый корень для создания контрольных интервалов.
Этап 14
Выберем тестовое значение из каждого интервала и подставим это значение в исходное неравенство для определения интервалов, удовлетворяющих неравенству.
Нажмите для увеличения количества этапов...
Этап 14.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 14.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 14.1.2
Заменим на в исходном неравенстве.
Этап 14.1.3
Левая часть больше правой части , значит, данное утверждение ложно.
False
False
Этап 14.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 14.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 14.2.2
Заменим на в исходном неравенстве.
Этап 14.2.3
Левая часть меньше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 14.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 14.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 14.3.2
Заменим на в исходном неравенстве.
Этап 14.3.3
Левая часть больше правой части , значит, данное утверждение ложно.
False
False
Этап 14.4
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 14.4.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 14.4.2
Заменим на в исходном неравенстве.
Этап 14.4.3
Левая часть меньше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 14.5
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 14.5.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 14.5.2
Заменим на в исходном неравенстве.
Этап 14.5.3
Левая часть больше правой части , значит, данное утверждение ложно.
False
False
Этап 14.6
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Ложь
Истина
Ложь
Истина
Ложь
Ложь
Истина
Ложь
Истина
Ложь
Этап 15
Решение состоит из всех истинных интервалов.
или
Этап 16
Преобразуем неравенство в интервальное представление.
Этап 17