Основы мат. анализа Примеры

Risolvere per x логарифм по основанию 5 от 3x+ логарифм по основанию 5 от 2x-1 = логарифм по основанию 5 от 16x-10
Этап 1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.1
Используем свойства произведения логарифмов: .
Этап 1.2
Упростим путем перемножения.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Применим свойство дистрибутивности.
Этап 1.2.2
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 1.2.2.2
Умножим на .
Этап 1.3
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.3.1.1
Перенесем .
Этап 1.3.1.2
Умножим на .
Этап 1.3.2
Умножим на .
Этап 2
Чтобы уравнение было равносильным, аргументы логарифмов с обеих сторон уравнения должны быть равными.
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Вычтем из обеих частей уравнения.
Этап 3.1.2
Вычтем из .
Этап 3.2
Добавим к обеим частям уравнения.
Этап 3.3
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 3.3.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Вынесем множитель из .
Этап 3.3.1.2
Запишем как плюс
Этап 3.3.1.3
Применим свойство дистрибутивности.
Этап 3.3.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Сгруппируем первые два члена и последние два члена.
Этап 3.3.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 3.3.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 3.4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.5.1
Приравняем к .
Этап 3.5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.5.2.1
Добавим к обеим частям уравнения.
Этап 3.5.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.5.2.2.1
Разделим каждый член на .
Этап 3.5.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.5.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.5.2.2.2.1.1
Сократим общий множитель.
Этап 3.5.2.2.2.1.2
Разделим на .
Этап 3.6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.6.1
Приравняем к .
Этап 3.6.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.6.2.1
Добавим к обеим частям уравнения.
Этап 3.6.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.6.2.2.1
Разделим каждый член на .
Этап 3.6.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.6.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.6.2.2.2.1.1
Сократим общий множитель.
Этап 3.6.2.2.2.1.2
Разделим на .
Этап 3.7
Окончательным решением являются все значения, при которых верно.
Этап 4
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Форма смешанных чисел: