Введите задачу...
Основы мат. анализа Примеры
Этап 1
Этап 1.1
Используем свойства произведения логарифмов: .
Этап 1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 1.2.1
Применим свойство дистрибутивности.
Этап 1.2.2
Применим свойство дистрибутивности.
Этап 1.2.3
Применим свойство дистрибутивности.
Этап 1.3
Упростим и объединим подобные члены.
Этап 1.3.1
Упростим каждый член.
Этап 1.3.1.1
Умножим на , сложив экспоненты.
Этап 1.3.1.1.1
Перенесем .
Этап 1.3.1.1.2
Умножим на .
Этап 1.3.1.2
Умножим на .
Этап 1.3.1.3
Умножим на .
Этап 1.3.2
Добавим и .
Этап 1.3.3
Добавим и .
Этап 2
Перепишем в экспоненциальной форме, используя определение логарифма. Если и — положительные вещественные числа и , то эквивалентно .
Этап 3
Этап 3.1
Перепишем уравнение в виде .
Этап 3.2
Перенесем все члены без в правую часть уравнения.
Этап 3.2.1
Добавим к обеим частям уравнения.
Этап 3.2.2
Добавим и .
Этап 3.3
Разделим каждый член на и упростим.
Этап 3.3.1
Разделим каждый член на .
Этап 3.3.2
Упростим левую часть.
Этап 3.3.2.1
Сократим общий множитель .
Этап 3.3.2.1.1
Сократим общий множитель.
Этап 3.3.2.1.2
Разделим на .
Этап 3.3.3
Упростим правую часть.
Этап 3.3.3.1
Разделим на .
Этап 3.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 3.5
Упростим .
Этап 3.5.1
Перепишем в виде .
Этап 3.5.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 3.6
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 3.6.1
Сначала с помощью положительного значения найдем первое решение.
Этап 3.6.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 3.6.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4
Исключим решения, которые не делают истинным.