Введите задачу...
Основы мат. анализа Примеры
Этап 1
Этап 1.1
Изолируем в левой части уравнения.
Этап 1.1.1
Перенесем все члены без в правую часть уравнения.
Этап 1.1.1.1
Вычтем из обеих частей уравнения.
Этап 1.1.1.2
Вычтем из обеих частей уравнения.
Этап 1.1.1.3
Вычтем из обеих частей уравнения.
Этап 1.1.2
Разделим каждый член на и упростим.
Этап 1.1.2.1
Разделим каждый член на .
Этап 1.1.2.2
Упростим левую часть.
Этап 1.1.2.2.1
Сократим общий множитель .
Этап 1.1.2.2.1.1
Сократим общий множитель.
Этап 1.1.2.2.1.2
Разделим на .
Этап 1.1.2.3
Упростим правую часть.
Этап 1.1.2.3.1
Упростим каждый член.
Этап 1.1.2.3.1.1
Деление двух отрицательных значений дает положительное значение.
Этап 1.1.2.3.1.2
Деление двух отрицательных значений дает положительное значение.
Этап 1.1.2.3.1.3
Деление двух отрицательных значений дает положительное значение.
Этап 1.2
Составим полный квадрат для .
Этап 1.2.1
Применим форму , чтобы найти значения , и .
Этап 1.2.2
Рассмотрим параболу в форме с выделенной вершиной.
Этап 1.2.3
Найдем значение по формуле .
Этап 1.2.3.1
Подставим значения и в формулу .
Этап 1.2.3.2
Упростим правую часть.
Этап 1.2.3.2.1
Умножим числитель на величину, обратную знаменателю.
Этап 1.2.3.2.2
Сократим общий множитель .
Этап 1.2.3.2.2.1
Вынесем множитель из .
Этап 1.2.3.2.2.2
Сократим общий множитель.
Этап 1.2.3.2.2.3
Перепишем это выражение.
Этап 1.2.3.2.3
Умножим на .
Этап 1.2.3.2.4
Объединим и .
Этап 1.2.3.2.5
Сократим общий множитель .
Этап 1.2.3.2.5.1
Сократим общий множитель.
Этап 1.2.3.2.5.2
Перепишем это выражение.
Этап 1.2.3.2.6
Разделим на .
Этап 1.2.4
Найдем значение по формуле .
Этап 1.2.4.1
Подставим значения , и в формулу .
Этап 1.2.4.2
Упростим правую часть.
Этап 1.2.4.2.1
Упростим каждый член.
Этап 1.2.4.2.1.1
Упростим числитель.
Этап 1.2.4.2.1.1.1
Применим правило умножения к .
Этап 1.2.4.2.1.1.2
Возведем в степень .
Этап 1.2.4.2.1.1.3
Возведем в степень .
Этап 1.2.4.2.1.2
Объединим и .
Этап 1.2.4.2.1.3
Умножим числитель на величину, обратную знаменателю.
Этап 1.2.4.2.1.4
Сократим общий множитель .
Этап 1.2.4.2.1.4.1
Вынесем множитель из .
Этап 1.2.4.2.1.4.2
Сократим общий множитель.
Этап 1.2.4.2.1.4.3
Перепишем это выражение.
Этап 1.2.4.2.1.5
Сократим общий множитель .
Этап 1.2.4.2.1.5.1
Вынесем множитель из .
Этап 1.2.4.2.1.5.2
Сократим общий множитель.
Этап 1.2.4.2.1.5.3
Перепишем это выражение.
Этап 1.2.4.2.2
Объединим числители над общим знаменателем.
Этап 1.2.4.2.3
Вычтем из .
Этап 1.2.4.2.4
Разделим на .
Этап 1.2.5
Подставим значения , и в уравнение с заданной вершиной .
Этап 1.3
Приравняем к новой правой части.
Этап 2
Воспользуемся формой с выделенной вершиной , чтобы определить значения , и .
Этап 3
Поскольку имеет положительное значение, ветви параболы направлены вправо.
вправо
Этап 4
Найдем вершину .
Этап 5
Этап 5.1
Найдем расстояние от вершины до фокуса параболы, используя следующую формулу.
Этап 5.2
Подставим значение в формулу.
Этап 5.3
Упростим.
Этап 5.3.1
Объединим и .
Этап 5.3.2
Умножим числитель на величину, обратную знаменателю.
Этап 5.3.3
Умножим на .
Этап 6
Этап 6.1
Фокус параболы можно найти, добавив к координате x , если ветви параболы направлены влево или вправо.
Этап 6.2
Подставим известные значения , и в формулу и упростим.
Этап 7
Найдем ось симметрии, то есть линию, которая проходит через вершину и фокус.
Этап 8
Этап 8.1
Директриса параболы ― это вертикальная прямая, которую можно найти вычитанием из x-координаты вершины , если ветви параболы направлены влево или вправо.
Этап 8.2
Подставим известные значения и в формулу и упростим.
Этап 9
Используем свойства параболы для анализа и построения ее графика.
Направление ветвей: вправо
Вершина:
Фокус:
Ось симметрии:
Директриса:
Этап 10