Введите задачу...
Основы мат. анализа Примеры
Этап 1
Этап 1.1
Изолируем в левой части уравнения.
Этап 1.1.1
Перепишем уравнение в виде .
Этап 1.1.2
Разделим каждый член на и упростим.
Этап 1.1.2.1
Разделим каждый член на .
Этап 1.1.2.2
Упростим левую часть.
Этап 1.1.2.2.1
Сократим общий множитель .
Этап 1.1.2.2.1.1
Сократим общий множитель.
Этап 1.1.2.2.1.2
Разделим на .
Этап 1.1.2.3
Упростим правую часть.
Этап 1.1.2.3.1
Вынесем знак минуса перед дробью.
Этап 1.1.3
Добавим к обеим частям уравнения.
Этап 1.1.4
Изменим порядок членов.
Этап 1.2
Составим полный квадрат для .
Этап 1.2.1
Упростим выражение.
Этап 1.2.1.1
Упростим каждый член.
Этап 1.2.1.1.1
Перепишем в виде .
Этап 1.2.1.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 1.2.1.1.2.1
Применим свойство дистрибутивности.
Этап 1.2.1.1.2.2
Применим свойство дистрибутивности.
Этап 1.2.1.1.2.3
Применим свойство дистрибутивности.
Этап 1.2.1.1.3
Упростим и объединим подобные члены.
Этап 1.2.1.1.3.1
Упростим каждый член.
Этап 1.2.1.1.3.1.1
Умножим на .
Этап 1.2.1.1.3.1.2
Умножим на .
Этап 1.2.1.1.3.1.3
Умножим на .
Этап 1.2.1.1.3.1.4
Умножим на .
Этап 1.2.1.1.3.2
Добавим и .
Этап 1.2.1.1.4
Применим свойство дистрибутивности.
Этап 1.2.1.1.5
Упростим.
Этап 1.2.1.1.5.1
Объединим и .
Этап 1.2.1.1.5.2
Сократим общий множитель .
Этап 1.2.1.1.5.2.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 1.2.1.1.5.2.2
Вынесем множитель из .
Этап 1.2.1.1.5.2.3
Вынесем множитель из .
Этап 1.2.1.1.5.2.4
Сократим общий множитель.
Этап 1.2.1.1.5.2.5
Перепишем это выражение.
Этап 1.2.1.1.5.3
Объединим и .
Этап 1.2.1.1.5.4
Умножим на .
Этап 1.2.1.1.6
Вынесем знак минуса перед дробью.
Этап 1.2.1.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.2.1.3
Объединим и .
Этап 1.2.1.4
Объединим числители над общим знаменателем.
Этап 1.2.1.5
Упростим числитель.
Этап 1.2.1.5.1
Умножим на .
Этап 1.2.1.5.2
Добавим и .
Этап 1.2.2
Применим форму , чтобы найти значения , и .
Этап 1.2.3
Рассмотрим параболу в форме с выделенной вершиной.
Этап 1.2.4
Найдем значение по формуле .
Этап 1.2.4.1
Подставим значения и в формулу .
Этап 1.2.4.2
Упростим правую часть.
Этап 1.2.4.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 1.2.4.2.2
Умножим числитель на величину, обратную знаменателю.
Этап 1.2.4.2.3
Объединим и .
Этап 1.2.4.2.4
Сократим общий множитель и .
Этап 1.2.4.2.4.1
Вынесем множитель из .
Этап 1.2.4.2.4.2
Сократим общие множители.
Этап 1.2.4.2.4.2.1
Вынесем множитель из .
Этап 1.2.4.2.4.2.2
Сократим общий множитель.
Этап 1.2.4.2.4.2.3
Перепишем это выражение.
Этап 1.2.4.2.5
Умножим числитель на величину, обратную знаменателю.
Этап 1.2.4.2.6
Сократим общий множитель .
Этап 1.2.4.2.6.1
Вынесем множитель из .
Этап 1.2.4.2.6.2
Сократим общий множитель.
Этап 1.2.4.2.6.3
Перепишем это выражение.
Этап 1.2.5
Найдем значение по формуле .
Этап 1.2.5.1
Подставим значения , и в формулу .
Этап 1.2.5.2
Упростим правую часть.
Этап 1.2.5.2.1
Упростим каждый член.
Этап 1.2.5.2.1.1
Упростим числитель.
Этап 1.2.5.2.1.1.1
Применим правило умножения к .
Этап 1.2.5.2.1.1.2
Возведем в степень .
Этап 1.2.5.2.1.1.3
Применим правило умножения к .
Этап 1.2.5.2.1.1.4
Единица в любой степени равна единице.
Этап 1.2.5.2.1.1.5
Возведем в степень .
Этап 1.2.5.2.1.1.6
Умножим на .
Этап 1.2.5.2.1.2
Упростим знаменатель.
Этап 1.2.5.2.1.2.1
Умножим на .
Этап 1.2.5.2.1.2.2
Объединим и .
Этап 1.2.5.2.1.3
Сократим выражение, путем отбрасывания общих множителей.
Этап 1.2.5.2.1.3.1
Сократим общий множитель и .
Этап 1.2.5.2.1.3.1.1
Вынесем множитель из .
Этап 1.2.5.2.1.3.1.2
Сократим общие множители.
Этап 1.2.5.2.1.3.1.2.1
Вынесем множитель из .
Этап 1.2.5.2.1.3.1.2.2
Сократим общий множитель.
Этап 1.2.5.2.1.3.1.2.3
Перепишем это выражение.
Этап 1.2.5.2.1.3.2
Вынесем знак минуса перед дробью.
Этап 1.2.5.2.1.4
Умножим числитель на величину, обратную знаменателю.
Этап 1.2.5.2.1.5
Сократим общий множитель .
Этап 1.2.5.2.1.5.1
Вынесем множитель из .
Этап 1.2.5.2.1.5.2
Вынесем множитель из .
Этап 1.2.5.2.1.5.3
Сократим общий множитель.
Этап 1.2.5.2.1.5.4
Перепишем это выражение.
Этап 1.2.5.2.1.6
Объединим и .
Этап 1.2.5.2.1.7
Вынесем знак минуса перед дробью.
Этап 1.2.5.2.1.8
Умножим .
Этап 1.2.5.2.1.8.1
Умножим на .
Этап 1.2.5.2.1.8.2
Умножим на .
Этап 1.2.5.2.2
Объединим числители над общим знаменателем.
Этап 1.2.5.2.3
Добавим и .
Этап 1.2.5.2.4
Разделим на .
Этап 1.2.6
Подставим значения , и в уравнение с заданной вершиной .
Этап 1.3
Приравняем к новой правой части.
Этап 2
Воспользуемся формой с выделенной вершиной , чтобы определить значения , и .
Этап 3
Поскольку имеет отрицательное значение, ветви параболы направлены вниз.
вниз
Этап 4
Найдем вершину .
Этап 5
Этап 5.1
Найдем расстояние от вершины до фокуса параболы, используя следующую формулу.
Этап 5.2
Подставим значение в формулу.
Этап 5.3
Упростим.
Этап 5.3.1
Сократим общий множитель и .
Этап 5.3.1.1
Перепишем в виде .
Этап 5.3.1.2
Вынесем знак минуса перед дробью.
Этап 5.3.2
Объединим и .
Этап 5.3.3
Сократим общий множитель и .
Этап 5.3.3.1
Вынесем множитель из .
Этап 5.3.3.2
Сократим общие множители.
Этап 5.3.3.2.1
Вынесем множитель из .
Этап 5.3.3.2.2
Сократим общий множитель.
Этап 5.3.3.2.3
Перепишем это выражение.
Этап 5.3.4
Умножим числитель на величину, обратную знаменателю.
Этап 5.3.5
Умножим .
Этап 5.3.5.1
Умножим на .
Этап 5.3.5.2
Умножим на .
Этап 6
Этап 6.1
Фокус параболы можно найти, добавив к координате y , если ветви параболы направлены вверх или вниз.
Этап 6.2
Подставим известные значения , и в формулу и упростим.
Этап 7
Найдем ось симметрии, то есть линию, которая проходит через вершину и фокус.
Этап 8
Этап 8.1
Директриса параболы ― это горизонтальная прямая, которую можно найти вычитанием из y-координаты вершины , если ветви параболы направлены вверх или вниз.
Этап 8.2
Подставим известные значения и в формулу и упростим.
Этап 9
Используем свойства параболы для анализа и построения ее графика.
Направление ветвей: вниз
Вершина:
Фокус:
Ось симметрии:
Директриса:
Этап 10