Введите задачу...
Основы мат. анализа Примеры
Этап 1
Этап 1.1
Изолируем в левой части уравнения.
Этап 1.1.1
Вычтем из .
Этап 1.1.2
Перенесем все члены без в правую часть уравнения.
Этап 1.1.2.1
Вычтем из обеих частей уравнения.
Этап 1.1.2.2
Добавим к обеим частям уравнения.
Этап 1.1.2.3
Вычтем из обеих частей уравнения.
Этап 1.1.3
Разделим каждый член на и упростим.
Этап 1.1.3.1
Разделим каждый член на .
Этап 1.1.3.2
Упростим левую часть.
Этап 1.1.3.2.1
Сократим общий множитель .
Этап 1.1.3.2.1.1
Сократим общий множитель.
Этап 1.1.3.2.1.2
Разделим на .
Этап 1.1.3.3
Упростим правую часть.
Этап 1.1.3.3.1
Упростим каждый член.
Этап 1.1.3.3.1.1
Деление двух отрицательных значений дает положительное значение.
Этап 1.1.3.3.1.2
Сократим общий множитель и .
Этап 1.1.3.3.1.2.1
Вынесем множитель из .
Этап 1.1.3.3.1.2.2
Сократим общие множители.
Этап 1.1.3.3.1.2.2.1
Вынесем множитель из .
Этап 1.1.3.3.1.2.2.2
Сократим общий множитель.
Этап 1.1.3.3.1.2.2.3
Перепишем это выражение.
Этап 1.1.3.3.1.3
Вынесем знак минуса перед дробью.
Этап 1.1.3.3.1.4
Сократим общий множитель и .
Этап 1.1.3.3.1.4.1
Вынесем множитель из .
Этап 1.1.3.3.1.4.2
Сократим общие множители.
Этап 1.1.3.3.1.4.2.1
Вынесем множитель из .
Этап 1.1.3.3.1.4.2.2
Сократим общий множитель.
Этап 1.1.3.3.1.4.2.3
Перепишем это выражение.
Этап 1.2
Составим полный квадрат для .
Этап 1.2.1
Применим форму , чтобы найти значения , и .
Этап 1.2.2
Рассмотрим параболу в форме с выделенной вершиной.
Этап 1.2.3
Найдем значение по формуле .
Этап 1.2.3.1
Подставим значения и в формулу .
Этап 1.2.3.2
Упростим правую часть.
Этап 1.2.3.2.1
Умножим числитель на величину, обратную знаменателю.
Этап 1.2.3.2.2
Объединим и .
Этап 1.2.3.2.3
Умножим на .
Этап 1.2.3.2.4
Сократим общий множитель и .
Этап 1.2.3.2.4.1
Вынесем множитель из .
Этап 1.2.3.2.4.2
Сократим общие множители.
Этап 1.2.3.2.4.2.1
Вынесем множитель из .
Этап 1.2.3.2.4.2.2
Сократим общий множитель.
Этап 1.2.3.2.4.2.3
Перепишем это выражение.
Этап 1.2.3.2.5
Умножим числитель на величину, обратную знаменателю.
Этап 1.2.3.2.6
Умножим на .
Этап 1.2.3.2.7
Сократим общий множитель .
Этап 1.2.3.2.7.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 1.2.3.2.7.2
Вынесем множитель из .
Этап 1.2.3.2.7.3
Сократим общий множитель.
Этап 1.2.3.2.7.4
Перепишем это выражение.
Этап 1.2.3.2.8
Сократим общий множитель .
Этап 1.2.3.2.8.1
Вынесем множитель из .
Этап 1.2.3.2.8.2
Сократим общий множитель.
Этап 1.2.3.2.8.3
Перепишем это выражение.
Этап 1.2.3.2.9
Умножим на .
Этап 1.2.4
Найдем значение по формуле .
Этап 1.2.4.1
Подставим значения , и в формулу .
Этап 1.2.4.2
Упростим правую часть.
Этап 1.2.4.2.1
Упростим каждый член.
Этап 1.2.4.2.1.1
Упростим числитель.
Этап 1.2.4.2.1.1.1
Применим правило умножения к .
Этап 1.2.4.2.1.1.2
Возведем в степень .
Этап 1.2.4.2.1.1.3
Применим правило умножения к .
Этап 1.2.4.2.1.1.4
Возведем в степень .
Этап 1.2.4.2.1.1.5
Возведем в степень .
Этап 1.2.4.2.1.1.6
Умножим на .
Этап 1.2.4.2.1.2
Объединим и .
Этап 1.2.4.2.1.3
Умножим на .
Этап 1.2.4.2.1.4
Сократим общий множитель и .
Этап 1.2.4.2.1.4.1
Вынесем множитель из .
Этап 1.2.4.2.1.4.2
Сократим общие множители.
Этап 1.2.4.2.1.4.2.1
Вынесем множитель из .
Этап 1.2.4.2.1.4.2.2
Сократим общий множитель.
Этап 1.2.4.2.1.4.2.3
Перепишем это выражение.
Этап 1.2.4.2.1.5
Умножим числитель на величину, обратную знаменателю.
Этап 1.2.4.2.1.6
Сократим общий множитель .
Этап 1.2.4.2.1.6.1
Вынесем множитель из .
Этап 1.2.4.2.1.6.2
Сократим общий множитель.
Этап 1.2.4.2.1.6.3
Перепишем это выражение.
Этап 1.2.4.2.1.7
Сократим общий множитель .
Этап 1.2.4.2.1.7.1
Вынесем множитель из .
Этап 1.2.4.2.1.7.2
Сократим общий множитель.
Этап 1.2.4.2.1.7.3
Перепишем это выражение.
Этап 1.2.4.2.2
Объединим числители над общим знаменателем.
Этап 1.2.4.2.3
Вычтем из .
Этап 1.2.4.2.4
Разделим на .
Этап 1.2.5
Подставим значения , и в уравнение с заданной вершиной .
Этап 1.3
Приравняем к новой правой части.
Этап 2
Воспользуемся формой с выделенной вершиной , чтобы определить значения , и .
Этап 3
Поскольку имеет положительное значение, ветви параболы направлены вверх.
вверх
Этап 4
Найдем вершину .
Этап 5
Этап 5.1
Найдем расстояние от вершины до фокуса параболы, используя следующую формулу.
Этап 5.2
Подставим значение в формулу.
Этап 5.3
Упростим.
Этап 5.3.1
Объединим и .
Этап 5.3.2
Сократим выражение, путем отбрасывания общих множителей.
Этап 5.3.2.1
Умножим на .
Этап 5.3.2.2
Сократим общий множитель и .
Этап 5.3.2.2.1
Вынесем множитель из .
Этап 5.3.2.2.2
Сократим общие множители.
Этап 5.3.2.2.2.1
Вынесем множитель из .
Этап 5.3.2.2.2.2
Сократим общий множитель.
Этап 5.3.2.2.2.3
Перепишем это выражение.
Этап 5.3.3
Умножим числитель на величину, обратную знаменателю.
Этап 5.3.4
Умножим на .
Этап 6
Этап 6.1
Фокус параболы можно найти, добавив к координате y , если ветви параболы направлены вверх или вниз.
Этап 6.2
Подставим известные значения , и в формулу и упростим.
Этап 7
Найдем ось симметрии, то есть линию, которая проходит через вершину и фокус.
Этап 8
Этап 8.1
Директриса параболы ― это горизонтальная прямая, которую можно найти вычитанием из y-координаты вершины , если ветви параболы направлены вверх или вниз.
Этап 8.2
Подставим известные значения и в формулу и упростим.
Этап 9
Используем свойства параболы для анализа и построения ее графика.
Направление ветвей: вверх
Вершина:
Фокус:
Ось симметрии:
Директриса:
Этап 10