Основы мат. анализа Примеры

Найдем перпендикулярную прямую 4x-2y=7 , (2,5)
,
Этап 1
Решим .
Нажмите для увеличения количества этапов...
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Разделим каждый член на .
Этап 1.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.2.1.1
Сократим общий множитель.
Этап 1.2.2.1.2
Разделим на .
Этап 1.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.2.3.1.1
Вынесем знак минуса перед дробью.
Этап 1.2.3.1.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.2.3.1.2.1
Вынесем множитель из .
Этап 1.2.3.1.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.2.3.1.2.2.1
Вынесем множитель из .
Этап 1.2.3.1.2.2.2
Сократим общий множитель.
Этап 1.2.3.1.2.2.3
Перепишем это выражение.
Этап 1.2.3.1.2.2.4
Разделим на .
Этап 2
Найдем угловой коэффициент при .
Нажмите для увеличения количества этапов...
Этап 2.1
Запишем в виде уравнения с угловым коэффициентом.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Уравнение с угловым коэффициентом имеет вид , где  — угловой коэффициент, а  — точка пересечения с осью y.
Этап 2.1.2
Изменим порядок и .
Этап 2.2
Использование уравнения с угловым коэффициентом, угловой коэффициент: .
Этап 3
Уравнение перпендикулярной прямой должно иметь угловой коэффициент, который является отрицательной обратной величиной по отношению к первоначальному угловому коэффициенту.
Этап 4
Найдем уравнение перпендикулярной прямой, используя уравнение прямой с угловым коэффициентом и заданной точкой.
Нажмите для увеличения количества этапов...
Этап 4.1
Используем угловой коэффициент и координаты заданной точки вместо и в уравнении прямой с угловым коэффициентом и заданной точкой , выведенном из уравнения с угловым коэффициентом .
Этап 4.2
Упростим уравнение и оставим его в виде уравнения прямой с угловым коэффициентом и заданной точкой.
Этап 5
Запишем в форме .
Нажмите для увеличения количества этапов...
Этап 5.1
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.1.1.1
Перепишем.
Этап 5.1.1.2
Упростим путем добавления нулей.
Этап 5.1.1.3
Применим свойство дистрибутивности.
Этап 5.1.1.4
Объединим и .
Этап 5.1.1.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.1.1.5.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 5.1.1.5.2
Вынесем множитель из .
Этап 5.1.1.5.3
Сократим общий множитель.
Этап 5.1.1.5.4
Перепишем это выражение.
Этап 5.1.1.6
Умножим на .
Этап 5.1.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 5.1.2.1
Добавим к обеим частям уравнения.
Этап 5.1.2.2
Добавим и .
Этап 5.2
Изменим порядок членов.
Этап 5.3
Избавимся от скобок.
Этап 6