Основы мат. анализа Примеры

Оценить предел предел ((x^3-2x-1)^2)/(x^4-2x+1), если x стремится к -1
Этап 1
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 2
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 3
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 4
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 5
Вынесем член из-под знака предела, так как он не зависит от .
Этап 6
Найдем предел , который является константой по мере приближения к .
Этап 7
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 8
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 9
Вынесем член из-под знака предела, так как он не зависит от .
Этап 10
Найдем предел , который является константой по мере приближения к .
Этап 11
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 11.1
Найдем предел , подставив значение для .
Этап 11.2
Найдем предел , подставив значение для .
Этап 11.3
Найдем предел , подставив значение для .
Этап 11.4
Найдем предел , подставив значение для .
Этап 12
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 12.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 12.1.1
Возведем в степень .
Этап 12.1.2
Умножим на .
Этап 12.1.3
Умножим на .
Этап 12.1.4
Добавим и .
Этап 12.1.5
Вычтем из .
Этап 12.1.6
Возведение в любую положительную степень дает .
Этап 12.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 12.2.1
Возведем в степень .
Этап 12.2.2
Умножим на .
Этап 12.2.3
Добавим и .
Этап 12.2.4
Добавим и .
Этап 12.3
Разделим на .