Введите задачу...
Основы мат. анализа Примеры
Этап 1
Применим форму , чтобы найти переменные, используемые для вычисления амплитуды, периода, сдвига фазы и смещения по вертикали.
Этап 2
Поскольку график функции не имеет максимального или минимального значения, его амплитуда не может быть определена.
Амплитуда: нет
Этап 3
Этап 3.1
Найдем период .
Этап 3.1.1
Период функции можно вычислить по формуле .
Этап 3.1.2
Заменим на в формуле периода.
Этап 3.1.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 3.2
Найдем период .
Этап 3.2.1
Период функции можно вычислить по формуле .
Этап 3.2.2
Заменим на в формуле периода.
Этап 3.2.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 3.3
Период суммы/разности тригонометрических функций равен наибольшему из отдельных периодов.
Этап 4
Этап 4.1
Сдвиг фазы функции можно вычислить по формуле .
Сдвиг фазы:
Этап 4.2
Заменим величины и в уравнении на сдвиг фазы.
Сдвиг фазы:
Этап 4.3
Умножим числитель на величину, обратную знаменателю.
Сдвиг фазы:
Этап 4.4
Сократим общий множитель .
Этап 4.4.1
Перенесем стоящий впереди знак минуса в в числитель.
Сдвиг фазы:
Этап 4.4.2
Вынесем множитель из .
Сдвиг фазы:
Этап 4.4.3
Сократим общий множитель.
Сдвиг фазы:
Этап 4.4.4
Перепишем это выражение.
Сдвиг фазы:
Сдвиг фазы:
Этап 4.5
Вынесем знак минуса перед дробью.
Сдвиг фазы:
Сдвиг фазы:
Этап 5
Перечислим свойства тригонометрической функции.
Амплитуда: нет
Период:
Сдвиг фазы: ( влево)
Смещение по вертикали:
Этап 6