Введите задачу...
Основы мат. анализа Примеры
Этап 1
Начнем с левой части.
Этап 2
Этап 2.1
Применим взаимно обратное тождество к .
Этап 2.2
Применим взаимно обратное тождество к .
Этап 2.3
Запишем в терминах синусов и косинусов, используя тождество для частного.
Этап 3
Этап 3.1
Multiply the numerator and denominator of the fraction by .
Этап 3.1.1
Умножим на .
Этап 3.1.2
Объединим.
Этап 3.2
Применим свойство дистрибутивности.
Этап 3.3
Упростим путем сокращения.
Этап 3.3.1
Сократим общий множитель .
Этап 3.3.1.1
Вынесем множитель из .
Этап 3.3.1.2
Сократим общий множитель.
Этап 3.3.1.3
Перепишем это выражение.
Этап 3.3.2
Сократим общий множитель .
Этап 3.3.2.1
Сократим общий множитель.
Этап 3.3.2.2
Перепишем это выражение.
Этап 3.3.3
Сократим общий множитель .
Этап 3.3.3.1
Сократим общий множитель.
Этап 3.3.3.2
Перепишем это выражение.
Этап 3.3.4
Возведем в степень .
Этап 3.3.5
Возведем в степень .
Этап 3.3.6
Применим правило степени для объединения показателей.
Этап 3.3.7
Добавим и .
Этап 3.4
Упростим знаменатель.
Этап 3.4.1
Вынесем множитель из .
Этап 3.4.1.1
Вынесем множитель из .
Этап 3.4.1.2
Вынесем множитель из .
Этап 3.4.1.3
Вынесем множитель из .
Этап 3.4.2
Умножим на .
Этап 3.5
Сократим общий множитель .
Этап 4
Перепишем в виде .
Этап 5
Поскольку была показана эквивалентность обеих сторон, уравнение является тождеством.
— тождество