Основы мат. анализа Примеры

Упростить ((x^2-1)/(2x^2-x-1))/((x^2-4)/(2x^2-3x-2))
Этап 1
Умножим числитель на величину, обратную знаменателю.
Этап 2
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.1
Перепишем в виде .
Этап 2.2
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 3
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 3.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Вынесем множитель из .
Этап 3.1.2
Запишем как плюс
Этап 3.1.3
Применим свойство дистрибутивности.
Этап 3.1.4
Умножим на .
Этап 3.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Сгруппируем первые два члена и последние два члена.
Этап 3.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 3.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.1
Сократим общий множитель.
Этап 4.2
Перепишем это выражение.
Этап 5
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 5.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 5.1.1
Вынесем множитель из .
Этап 5.1.2
Запишем как плюс
Этап 5.1.3
Применим свойство дистрибутивности.
Этап 5.1.4
Умножим на .
Этап 5.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Сгруппируем первые два члена и последние два члена.
Этап 5.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 5.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 6
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 6.1
Перепишем в виде .
Этап 6.2
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 7
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 7.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.1.1
Сократим общий множитель.
Этап 7.1.2
Перепишем это выражение.
Этап 7.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.2.1
Сократим общий множитель.
Этап 7.2.2
Перепишем это выражение.
Этап 7.3
Умножим на .