Основы мат. анализа Примеры

Этап 1
Перепишем уравнение в виде .
Этап 2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
Избавимся от скобок.
Этап 2.3
НОК единицы и любого выражения есть это выражение.
Этап 3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Сократим общий множитель.
Этап 3.2.1.2
Перепишем это выражение.
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Умножим на .
Этап 4
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 4.1
Вычтем из обеих частей уравнения.
Этап 4.2
Вычтем из обеих частей уравнения.
Этап 4.3
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 4.3.1.1
Изменим порядок и .
Этап 4.3.1.2
Вынесем множитель из .
Этап 4.3.1.3
Вынесем множитель из .
Этап 4.3.1.4
Перепишем в виде .
Этап 4.3.1.5
Вынесем множитель из .
Этап 4.3.1.6
Вынесем множитель из .
Этап 4.3.2
Перепишем в виде .
Этап 4.3.3
Пусть . Подставим вместо для всех.
Этап 4.3.4
Разложим на множители, используя правило полных квадратов.
Нажмите для увеличения количества этапов...
Этап 4.3.4.1
Перепишем в виде .
Этап 4.3.4.2
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Этап 4.3.4.3
Перепишем многочлен.
Этап 4.3.4.4
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Этап 4.3.5
Заменим все вхождения на .
Этап 4.4
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.4.1
Разделим каждый член на .
Этап 4.4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.4.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 4.4.2.2
Разделим на .
Этап 4.4.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.4.3.1
Разделим на .
Этап 4.5
Приравняем к .
Этап 4.6
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.6.1
Добавим к обеим частям уравнения.
Этап 4.6.2
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 4.6.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 4.6.3.1
Сначала с помощью положительного значения найдем первое решение.
Этап 4.6.3.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 4.6.3.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: