Введите задачу...
Основы мат. анализа Примеры
Этап 1
Преобразуем неравенство в уравнение.
Этап 2
Этап 2.1
Вынесем множитель из .
Этап 2.2
Вынесем множитель из .
Этап 2.3
Вынесем множитель из .
Этап 3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4
Этап 4.1
Приравняем к .
Этап 4.2
Решим относительно .
Этап 4.2.1
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 4.2.2
Уравнение невозможно решить, так как выражение не определено.
Неопределенные
Этап 4.2.3
Нет решения для
Нет решения
Нет решения
Нет решения
Этап 5
Этап 5.1
Приравняем к .
Этап 5.2
Решим относительно .
Этап 5.2.1
Добавим к обеим частям уравнения.
Этап 5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 5.2.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 5.2.3.1
Сначала с помощью положительного значения найдем первое решение.
Этап 5.2.3.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 5.2.3.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 6
Окончательным решением являются все значения, при которых верно.
Этап 7
Используем каждый корень для создания контрольных интервалов.
Этап 8
Этап 8.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 8.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 8.1.2
Заменим на в исходном неравенстве.
Этап 8.1.3
Левая часть не меньше правой части , значит, данное утверждение ложно.
False
False
Этап 8.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 8.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 8.2.2
Заменим на в исходном неравенстве.
Этап 8.2.3
Левая часть меньше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 8.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 8.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 8.3.2
Заменим на в исходном неравенстве.
Этап 8.3.3
Левая часть не меньше правой части , значит, данное утверждение ложно.
False
False
Этап 8.4
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Ложь
Истина
Ложь
Ложь
Истина
Ложь
Этап 9
Решение состоит из всех истинных интервалов.
Этап 10
Результат можно представить в различном виде.
Форма неравенства:
Интервальное представление:
Этап 11