Основы мат. анализа Примеры

Этап 1
Возьмем обратный котангенс обеих частей уравнения, чтобы извлечь из котангенса.
Этап 2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.1
Точное значение : .
Этап 3
Вычтем из обеих частей уравнения.
Этап 4
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Разделим каждый член на .
Этап 4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 4.2.2
Разделим на .
Этап 4.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.3.1.1
Вынесем знак минуса из знаменателя .
Этап 4.3.1.2
Перепишем в виде .
Этап 4.3.1.3
Разделим на .
Этап 5
Функция котангенса положительна в первом и третьем квадрантах. Для нахождения второго решения прибавим угол приведения из и найдем решение в четвертом квадранте.
Этап 6
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 6.1.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.1.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 6.1.2.1
Объединим и .
Этап 6.1.2.2
Объединим числители над общим знаменателем.
Этап 6.1.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.1.3.1
Перенесем влево от .
Этап 6.1.3.2
Добавим и .
Этап 6.2
Вычтем из обеих частей уравнения.
Этап 6.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 6.3.1
Разделим каждый член на .
Этап 6.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 6.3.2.2
Разделим на .
Этап 6.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.3.3.1.1
Вынесем знак минуса из знаменателя .
Этап 6.3.3.1.2
Перепишем в виде .
Этап 6.3.3.1.3
Разделим на .
Этап 7
Найдем период .
Нажмите для увеличения количества этапов...
Этап 7.1
Период функции можно вычислить по формуле .
Этап 7.2
Заменим на в формуле периода.
Этап 7.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 7.4
Разделим на .
Этап 8
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Нажмите для увеличения количества этапов...
Этап 8.1
Добавим к , чтобы найти положительный угол.
Этап 8.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 8.3
Объединим и .
Этап 8.4
Объединим числители над общим знаменателем.
Этап 8.5
Вычтем из .
Нажмите для увеличения количества этапов...
Этап 8.5.1
Изменим порядок и .
Этап 8.5.2
Вычтем из .
Этап 8.6
Добавим к , чтобы найти положительный угол.
Этап 8.7
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 8.8
Объединим и .
Этап 8.9
Объединим числители над общим знаменателем.
Этап 8.10
Вычтем из .
Нажмите для увеличения количества этапов...
Этап 8.10.1
Изменим порядок и .
Этап 8.10.2
Вычтем из .
Этап 8.11
Вынесем знак минуса перед дробью.
Этап 8.12
Перечислим новые углы.
Этап 9
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Этап 10
Объединим ответы.
, для любого целого