Введите задачу...
Основы мат. анализа Примеры
Этап 1
Этап 1.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 1.2
Применим формулу тройного угла для синуса.
Этап 1.3
Добавим и .
Этап 1.4
Применим формулу тройного угла для синуса.
Этап 1.5
Вычтем из .
Этап 1.6
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 1.6.1
Применим свойство дистрибутивности.
Этап 1.6.2
Применим свойство дистрибутивности.
Этап 1.6.3
Применим свойство дистрибутивности.
Этап 1.7
Упростим и объединим подобные члены.
Этап 1.7.1
Упростим каждый член.
Этап 1.7.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 1.7.1.2
Умножим на , сложив экспоненты.
Этап 1.7.1.2.1
Перенесем .
Этап 1.7.1.2.2
Применим правило степени для объединения показателей.
Этап 1.7.1.2.3
Добавим и .
Этап 1.7.1.3
Умножим на .
Этап 1.7.1.4
Умножим на , сложив экспоненты.
Этап 1.7.1.4.1
Перенесем .
Этап 1.7.1.4.2
Умножим на .
Этап 1.7.1.4.2.1
Возведем в степень .
Этап 1.7.1.4.2.2
Применим правило степени для объединения показателей.
Этап 1.7.1.4.3
Добавим и .
Этап 1.7.1.5
Умножим на .
Этап 1.7.1.6
Умножим на , сложив экспоненты.
Этап 1.7.1.6.1
Перенесем .
Этап 1.7.1.6.2
Умножим на .
Этап 1.7.1.6.2.1
Возведем в степень .
Этап 1.7.1.6.2.2
Применим правило степени для объединения показателей.
Этап 1.7.1.6.3
Добавим и .
Этап 1.7.1.7
Умножим на .
Этап 1.7.1.8
Умножим .
Этап 1.7.1.8.1
Умножим на .
Этап 1.7.1.8.2
Возведем в степень .
Этап 1.7.1.8.3
Возведем в степень .
Этап 1.7.1.8.4
Применим правило степени для объединения показателей.
Этап 1.7.1.8.5
Добавим и .
Этап 1.7.2
Вычтем из .
Этап 2
Этап 2.1
Вынесем множитель из .
Этап 2.1.1
Вынесем множитель из .
Этап 2.1.2
Вынесем множитель из .
Этап 2.1.3
Вынесем множитель из .
Этап 2.1.4
Вынесем множитель из .
Этап 2.1.5
Вынесем множитель из .
Этап 2.2
Перепишем в виде .
Этап 2.3
Пусть . Подставим вместо для всех.
Этап 2.4
Разложим на множители методом группировки
Этап 2.4.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 2.4.1.1
Вынесем множитель из .
Этап 2.4.1.2
Запишем как плюс
Этап 2.4.1.3
Применим свойство дистрибутивности.
Этап 2.4.2
Вынесем наибольший общий делитель из каждой группы.
Этап 2.4.2.1
Сгруппируем первые два члена и последние два члена.
Этап 2.4.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 2.4.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 2.5
Заменим все вхождения на .
Этап 2.6
Перепишем в виде .
Этап 2.7
Разложим на множители.
Этап 2.7.1
Разложим на множители.
Этап 2.7.1.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 2.7.1.2
Избавимся от ненужных скобок.
Этап 2.7.2
Избавимся от ненужных скобок.
Этап 3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4
Этап 4.1
Приравняем к .
Этап 4.2
Решим относительно .
Этап 4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 4.2.2
Упростим .
Этап 4.2.2.1
Перепишем в виде .
Этап 4.2.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 4.2.2.3
Плюс или минус равно .
Этап 4.2.3
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 4.2.4
Упростим правую часть.
Этап 4.2.4.1
Точное значение : .
Этап 4.2.5
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 4.2.6
Вычтем из .
Этап 4.2.7
Найдем период .
Этап 4.2.7.1
Период функции можно вычислить по формуле .
Этап 4.2.7.2
Заменим на в формуле периода.
Этап 4.2.7.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 4.2.7.4
Разделим на .
Этап 4.2.8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 5
Этап 5.1
Приравняем к .
Этап 5.2
Решим относительно .
Этап 5.2.1
Добавим к обеим частям уравнения.
Этап 5.2.2
Разделим каждый член на и упростим.
Этап 5.2.2.1
Разделим каждый член на .
Этап 5.2.2.2
Упростим левую часть.
Этап 5.2.2.2.1
Сократим общий множитель .
Этап 5.2.2.2.1.1
Сократим общий множитель.
Этап 5.2.2.2.1.2
Разделим на .
Этап 5.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 5.2.4
Упростим .
Этап 5.2.4.1
Перепишем в виде .
Этап 5.2.4.2
Любой корень из равен .
Этап 5.2.4.3
Умножим на .
Этап 5.2.4.4
Объединим и упростим знаменатель.
Этап 5.2.4.4.1
Умножим на .
Этап 5.2.4.4.2
Возведем в степень .
Этап 5.2.4.4.3
Возведем в степень .
Этап 5.2.4.4.4
Применим правило степени для объединения показателей.
Этап 5.2.4.4.5
Добавим и .
Этап 5.2.4.4.6
Перепишем в виде .
Этап 5.2.4.4.6.1
С помощью запишем в виде .
Этап 5.2.4.4.6.2
Применим правило степени и перемножим показатели, .
Этап 5.2.4.4.6.3
Объединим и .
Этап 5.2.4.4.6.4
Сократим общий множитель .
Этап 5.2.4.4.6.4.1
Сократим общий множитель.
Этап 5.2.4.4.6.4.2
Перепишем это выражение.
Этап 5.2.4.4.6.5
Найдем экспоненту.
Этап 5.2.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 5.2.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 5.2.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 5.2.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 5.2.6
Выпишем каждое выражение, чтобы найти решение для .
Этап 5.2.7
Решим относительно в .
Этап 5.2.7.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 5.2.7.2
Упростим правую часть.
Этап 5.2.7.2.1
Точное значение : .
Этап 5.2.7.3
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 5.2.7.4
Упростим .
Этап 5.2.7.4.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5.2.7.4.2
Объединим дроби.
Этап 5.2.7.4.2.1
Объединим и .
Этап 5.2.7.4.2.2
Объединим числители над общим знаменателем.
Этап 5.2.7.4.3
Упростим числитель.
Этап 5.2.7.4.3.1
Перенесем влево от .
Этап 5.2.7.4.3.2
Вычтем из .
Этап 5.2.7.5
Найдем период .
Этап 5.2.7.5.1
Период функции можно вычислить по формуле .
Этап 5.2.7.5.2
Заменим на в формуле периода.
Этап 5.2.7.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 5.2.7.5.4
Разделим на .
Этап 5.2.7.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 5.2.8
Решим относительно в .
Этап 5.2.8.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 5.2.8.2
Упростим правую часть.
Этап 5.2.8.2.1
Точное значение : .
Этап 5.2.8.3
Функция синуса отрицательна в третьем и четвертом квадрантах. Для нахождения второго решения вычтем решение из , чтобы найти угол приведения. Затем добавим этот угол приведения к и найдем решение в третьем квадранте.
Этап 5.2.8.4
Упростим выражение, чтобы найти второе решение.
Этап 5.2.8.4.1
Вычтем из .
Этап 5.2.8.4.2
Результирующий угол является положительным, меньшим и отличается от на полный оборот.
Этап 5.2.8.5
Найдем период .
Этап 5.2.8.5.1
Период функции можно вычислить по формуле .
Этап 5.2.8.5.2
Заменим на в формуле периода.
Этап 5.2.8.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 5.2.8.5.4
Разделим на .
Этап 5.2.8.6
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Этап 5.2.8.6.1
Добавим к , чтобы найти положительный угол.
Этап 5.2.8.6.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5.2.8.6.3
Объединим дроби.
Этап 5.2.8.6.3.1
Объединим и .
Этап 5.2.8.6.3.2
Объединим числители над общим знаменателем.
Этап 5.2.8.6.4
Упростим числитель.
Этап 5.2.8.6.4.1
Умножим на .
Этап 5.2.8.6.4.2
Вычтем из .
Этап 5.2.8.6.5
Перечислим новые углы.
Этап 5.2.8.7
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 5.2.9
Перечислим все решения.
, для любого целого
Этап 5.2.10
Объединим ответы.
, для любого целого
, для любого целого
, для любого целого
Этап 6
Этап 6.1
Приравняем к .
Этап 6.2
Решим относительно .
Этап 6.2.1
Вычтем из обеих частей уравнения.
Этап 6.2.2
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 6.2.3
Упростим правую часть.
Этап 6.2.3.1
Точное значение : .
Этап 6.2.4
Функция синуса отрицательна в третьем и четвертом квадрантах. Для нахождения второго решения вычтем решение из , чтобы найти угол приведения. Затем добавим этот угол приведения к и найдем решение в третьем квадранте.
Этап 6.2.5
Упростим выражение, чтобы найти второе решение.
Этап 6.2.5.1
Вычтем из .
Этап 6.2.5.2
Результирующий угол является положительным, меньшим и отличается от на полный оборот.
Этап 6.2.6
Найдем период .
Этап 6.2.6.1
Период функции можно вычислить по формуле .
Этап 6.2.6.2
Заменим на в формуле периода.
Этап 6.2.6.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 6.2.6.4
Разделим на .
Этап 6.2.7
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Этап 6.2.7.1
Добавим к , чтобы найти положительный угол.
Этап 6.2.7.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.2.7.3
Объединим дроби.
Этап 6.2.7.3.1
Объединим и .
Этап 6.2.7.3.2
Объединим числители над общим знаменателем.
Этап 6.2.7.4
Упростим числитель.
Этап 6.2.7.4.1
Умножим на .
Этап 6.2.7.4.2
Вычтем из .
Этап 6.2.7.5
Перечислим новые углы.
Этап 6.2.8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 7
Этап 7.1
Приравняем к .
Этап 7.2
Решим относительно .
Этап 7.2.1
Добавим к обеим частям уравнения.
Этап 7.2.2
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 7.2.3
Упростим правую часть.
Этап 7.2.3.1
Точное значение : .
Этап 7.2.4
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 7.2.5
Упростим .
Этап 7.2.5.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 7.2.5.2
Объединим дроби.
Этап 7.2.5.2.1
Объединим и .
Этап 7.2.5.2.2
Объединим числители над общим знаменателем.
Этап 7.2.5.3
Упростим числитель.
Этап 7.2.5.3.1
Перенесем влево от .
Этап 7.2.5.3.2
Вычтем из .
Этап 7.2.6
Найдем период .
Этап 7.2.6.1
Период функции можно вычислить по формуле .
Этап 7.2.6.2
Заменим на в формуле периода.
Этап 7.2.6.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 7.2.6.4
Разделим на .
Этап 7.2.7
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 8
Окончательным решением являются все значения, при которых верно.
, для любого целого
Этап 9
Этап 9.1
Объединим и в .
, для любого целого
Этап 9.2
Объединим и в .
, для любого целого
Этап 9.3
Объединим и в .
, для любого целого
Этап 9.4
Объединим ответы.
, для любого целого
, для любого целого