Основы мат. анализа Примеры

Этап 1
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 1.2
Избавимся от скобок.
Этап 1.3
НОК единицы и любого выражения есть это выражение.
Этап 2
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 2.1
Умножим каждый член на .
Этап 2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Сократим общий множитель.
Этап 2.2.1.2
Перепишем это выражение.
Этап 2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Применим свойство дистрибутивности.
Этап 2.3.2
Умножим на .
Этап 3
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 3.1
Вычтем из обеих частей уравнения.
Этап 3.2
Вычтем из обеих частей уравнения.
Этап 3.3
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 3.3.2
Запишем разложение на множители, используя данные целые числа.
Этап 3.4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.5.1
Приравняем к .
Этап 3.5.2
Добавим к обеим частям уравнения.
Этап 3.6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.6.1
Приравняем к .
Этап 3.6.2
Вычтем из обеих частей уравнения.
Этап 3.7
Окончательным решением являются все значения, при которых верно.