Введите задачу...
Основы мат. анализа Примеры
Этап 1
Найдем общий множитель , который присутствует в каждом члене.
Этап 2
Подставим вместо .
Этап 3
Этап 3.1
Умножим на .
Этап 3.2
Разложим на множители методом группировки
Этап 3.2.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 3.2.1.1
Вынесем множитель из .
Этап 3.2.1.2
Запишем как плюс
Этап 3.2.1.3
Применим свойство дистрибутивности.
Этап 3.2.2
Вынесем наибольший общий делитель из каждой группы.
Этап 3.2.2.1
Сгруппируем первые два члена и последние два члена.
Этап 3.2.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 3.2.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 3.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.4
Приравняем к , затем решим относительно .
Этап 3.4.1
Приравняем к .
Этап 3.4.2
Решим относительно .
Этап 3.4.2.1
Добавим к обеим частям уравнения.
Этап 3.4.2.2
Разделим каждый член на и упростим.
Этап 3.4.2.2.1
Разделим каждый член на .
Этап 3.4.2.2.2
Упростим левую часть.
Этап 3.4.2.2.2.1
Сократим общий множитель .
Этап 3.4.2.2.2.1.1
Сократим общий множитель.
Этап 3.4.2.2.2.1.2
Разделим на .
Этап 3.5
Приравняем к , затем решим относительно .
Этап 3.5.1
Приравняем к .
Этап 3.5.2
Вычтем из обеих частей уравнения.
Этап 3.6
Окончательным решением являются все значения, при которых верно.
Этап 4
Подставим вместо .
Этап 5
Этап 5.1
Возведем обе части уравнения в степень , чтобы исключить дробный показатель в левой части.
Этап 5.2
Упростим показатель степени.
Этап 5.2.1
Упростим левую часть.
Этап 5.2.1.1
Упростим .
Этап 5.2.1.1.1
Перемножим экспоненты в .
Этап 5.2.1.1.1.1
Применим правило степени и перемножим показатели, .
Этап 5.2.1.1.1.2
Сократим общий множитель .
Этап 5.2.1.1.1.2.1
Сократим общий множитель.
Этап 5.2.1.1.1.2.2
Перепишем это выражение.
Этап 5.2.1.1.2
Упростим.
Этап 5.2.2
Упростим правую часть.
Этап 5.2.2.1
Упростим .
Этап 5.2.2.1.1
Применим правило умножения к .
Этап 5.2.2.1.2
Единица в любой степени равна единице.
Этап 5.2.2.1.3
Возведем в степень .
Этап 6
Этап 6.1
Возведем обе части уравнения в степень , чтобы исключить дробный показатель в левой части.
Этап 6.2
Упростим показатель степени.
Этап 6.2.1
Упростим левую часть.
Этап 6.2.1.1
Упростим .
Этап 6.2.1.1.1
Перемножим экспоненты в .
Этап 6.2.1.1.1.1
Применим правило степени и перемножим показатели, .
Этап 6.2.1.1.1.2
Сократим общий множитель .
Этап 6.2.1.1.1.2.1
Сократим общий множитель.
Этап 6.2.1.1.1.2.2
Перепишем это выражение.
Этап 6.2.1.1.2
Упростим.
Этап 6.2.2
Упростим правую часть.
Этап 6.2.2.1
Возведем в степень .
Этап 7
Перечислим все решения.
Этап 8
Исключим решения, которые не делают истинным.
Этап 9
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: