Основы мат. анализа Примеры

Этап 1
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Вынесем множитель из .
Этап 1.2.2
Вынесем множитель из .
Этап 1.2.3
Вынесем множитель из .
Этап 2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
Since contains both numbers and variables, there are four steps to find the LCM. Find LCM for the numeric, variable, and compound variable parts. Then, multiply them all together.
Этапы поиска НОК для :
1. Найдем НОК для числовой части .
2. Найдем НОК для переменной части .
3. Найдем НОК для составной переменной части .
4. Перемножим все НОК.
Этап 2.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.4
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.5
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.6
Множителем является само значение .
встречается раз.
Этап 2.7
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.8
Множителем является само значение .
встречается раз.
Этап 2.9
НОК представляет собой произведение всех множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.10
Наименьшее общее кратное некоторых чисел равно наименьшему числу, на которое делятся эти числа.
Этап 3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.2.1.2
Вынесем множитель из .
Этап 3.2.1.3
Сократим общий множитель.
Этап 3.2.1.4
Перепишем это выражение.
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1.1.1
Сократим общий множитель.
Этап 3.3.1.1.2
Перепишем это выражение.
Этап 3.3.1.2
Применим свойство дистрибутивности.
Этап 3.3.1.3
Умножим на .
Этап 3.3.1.4
Перенесем влево от .
Этап 3.3.1.5
Применим свойство дистрибутивности.
Этап 3.3.1.6
Умножим на .
Этап 4
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 4.1
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 4.2
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Добавим к обеим частям уравнения.
Этап 4.2.2
Добавим и .
Этап 4.3
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 4.3.1.1
Перенесем .
Этап 4.3.1.2
Вынесем множитель из .
Этап 4.3.1.3
Вынесем множитель из .
Этап 4.3.1.4
Перепишем в виде .
Этап 4.3.1.5
Вынесем множитель из .
Этап 4.3.1.6
Вынесем множитель из .
Этап 4.3.2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 4.3.2.1.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 4.3.2.1.1.1
Вынесем множитель из .
Этап 4.3.2.1.1.2
Запишем как плюс
Этап 4.3.2.1.1.3
Применим свойство дистрибутивности.
Этап 4.3.2.1.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1.2.1
Сгруппируем первые два члена и последние два члена.
Этап 4.3.2.1.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 4.3.2.1.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 4.3.2.2
Избавимся от ненужных скобок.
Этап 4.4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.5.1
Приравняем к .
Этап 4.5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.5.2.1
Добавим к обеим частям уравнения.
Этап 4.5.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.5.2.2.1
Разделим каждый член на .
Этап 4.5.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.5.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.5.2.2.2.1.1
Сократим общий множитель.
Этап 4.5.2.2.2.1.2
Разделим на .
Этап 4.6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.6.1
Приравняем к .
Этап 4.6.2
Вычтем из обеих частей уравнения.
Этап 4.7
Окончательным решением являются все значения, при которых верно.
Этап 5
Исключим решения, которые не делают истинным.
Этап 6
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Форма смешанных чисел: