Основы мат. анализа Примеры

Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Вынесем множитель из .
Этап 2.1.2
Вынесем множитель из .
Этап 2.1.3
Вынесем множитель из .
Этап 2.1.4
Вынесем множитель из .
Этап 2.1.5
Вынесем множитель из .
Этап 2.2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 2.2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 2.2.2
Избавимся от ненужных скобок.
Этап 3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Приравняем к .
Этап 4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Возьмем логарифм по основанию обеих частей уравнения, чтобы избавиться от переменной в показателе степени.
Этап 4.2.2
Уравнение невозможно решить, так как выражение не определено.
Неопределенные
Этап 4.2.3
Нет решения для
Нет решения
Нет решения
Нет решения
Этап 5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Приравняем к .
Этап 5.2
Добавим к обеим частям уравнения.
Этап 6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Приравняем к .
Этап 6.2
Вычтем из обеих частей уравнения.
Этап 7
Окончательным решением являются все значения, при которых верно.