Основы мат. анализа Примеры

Этап 1
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 1.2
Since contains both numbers and variables, there are four steps to find the LCM. Find LCM for the numeric, variable, and compound variable parts. Then, multiply them all together.
Этапы поиска НОК для :
1. Найдем НОК для числовой части .
2. Найдем НОК для переменной части .
3. Найдем НОК для составной переменной части .
4. Перемножим все НОК.
Этап 1.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 1.4
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 1.5
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 1.6
Множителем является само значение .
встречается раз.
Этап 1.7
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 1.8
Множителем является само значение .
встречается раз.
Этап 1.9
НОК представляет собой произведение всех множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 1.10
Наименьшее общее кратное некоторых чисел равно наименьшему числу, на которое делятся эти числа.
Этап 2
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 2.1
Умножим каждый член на .
Этап 2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1.1
Вынесем множитель из .
Этап 2.2.1.1.2
Сократим общий множитель.
Этап 2.2.1.1.3
Перепишем это выражение.
Этап 2.2.1.2
Возведем в степень .
Этап 2.2.1.3
Возведем в степень .
Этап 2.2.1.4
Применим правило степени для объединения показателей.
Этап 2.2.1.5
Добавим и .
Этап 2.2.1.6
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.6.1
Сократим общий множитель.
Этап 2.2.1.6.2
Перепишем это выражение.
Этап 2.2.1.7
Применим свойство дистрибутивности.
Этап 2.2.1.8
Умножим на .
Этап 2.2.1.9
Умножим на .
Этап 2.2.1.10
Применим свойство дистрибутивности.
Этап 2.2.1.11
Перенесем влево от .
Этап 2.2.1.12
Перепишем, используя свойство коммутативности умножения.
Этап 2.2.1.13
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.2.1.13.1
Перенесем .
Этап 2.2.1.13.2
Умножим на .
Этап 2.2.1.14
Применим свойство дистрибутивности.
Этап 2.2.1.15
Умножим на .
Этап 2.2.1.16
Умножим на .
Этап 2.2.2
Упростим путем добавления членов.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Добавим и .
Этап 2.2.2.2
Вычтем из .
Этап 2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Упростим путем перемножения.
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Применим свойство дистрибутивности.
Этап 2.3.1.2
Упорядочим.
Нажмите для увеличения количества этапов...
Этап 2.3.1.2.1
Перенесем влево от .
Этап 2.3.1.2.2
Перепишем, используя свойство коммутативности умножения.
Этап 2.3.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Перенесем .
Этап 2.3.2.2
Умножим на .
Этап 2.3.3
Умножим на .
Этап 3
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 3.1
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 3.1.1.1
Вынесем множитель из .
Этап 3.1.1.2
Вынесем множитель из .
Этап 3.1.1.3
Вынесем множитель из .
Этап 3.1.1.4
Вынесем множитель из .
Этап 3.1.1.5
Вынесем множитель из .
Этап 3.1.2
Изменим порядок членов.
Этап 3.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Разделим каждый член на .
Этап 3.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1
Сократим общий множитель.
Этап 3.2.2.1.2
Разделим на .
Этап 3.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.3.1
Разделим на .
Этап 3.3
Используем формулу для нахождения корней квадратного уравнения.
Этап 3.4
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 3.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.5.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 3.5.1.1
Возведем в степень .
Этап 3.5.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.5.1.2.1
Умножим на .
Этап 3.5.1.2.2
Умножим на .
Этап 3.5.1.3
Вычтем из .
Этап 3.5.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 3.5.1.4.1
Вынесем множитель из .
Этап 3.5.1.4.2
Перепишем в виде .
Этап 3.5.1.5
Вынесем члены из-под знака корня.
Этап 3.5.2
Умножим на .
Этап 3.5.3
Упростим .
Этап 3.6
Окончательный ответ является комбинацией обоих решений.
Этап 4
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: