Введите задачу...
Основы мат. анализа Примеры
Этап 1
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Выразим через синусы и косинусы.
Этап 1.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.4
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.5
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 1.5.1
Умножим на .
Этап 1.5.2
Умножим на .
Этап 1.5.3
Изменим порядок множителей в .
Этап 1.6
Объединим числители над общим знаменателем.
Этап 1.7
Вычтем из .
Этап 2
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
НОК единицы и любого выражения есть это выражение.
Этап 3
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Сократим общий множитель .
Этап 3.2.1.1
Сократим общий множитель.
Этап 3.2.1.2
Перепишем это выражение.
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Упростим путем перемножения.
Этап 3.3.1.1
Применим свойство дистрибутивности.
Этап 3.3.1.2
Упорядочим.
Этап 3.3.1.2.1
Перенесем влево от .
Этап 3.3.1.2.2
Перепишем, используя свойство коммутативности умножения.
Этап 3.3.2
Умножим на , сложив экспоненты.
Этап 3.3.2.1
Перенесем .
Этап 3.3.2.2
Умножим на .
Этап 3.3.3
Упростим путем перемножения.
Этап 3.3.3.1
Применим свойство дистрибутивности.
Этап 3.3.3.2
Умножим.
Этап 3.3.3.2.1
Умножим на .
Этап 3.3.3.2.2
Умножим на .
Этап 4
Этап 4.1
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 4.2
Перенесем все члены с в левую часть уравнения.
Этап 4.2.1
Добавим к обеим частям уравнения.
Этап 4.2.2
Добавим и .
Этап 4.3
Вычтем из обеих частей уравнения.
Этап 4.4
Используем формулу для нахождения корней квадратного уравнения.
Этап 4.5
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 4.6
Упростим.
Этап 4.6.1
Упростим числитель.
Этап 4.6.1.1
Возведем в степень .
Этап 4.6.1.2
Умножим .
Этап 4.6.1.2.1
Умножим на .
Этап 4.6.1.2.2
Умножим на .
Этап 4.6.1.3
Добавим и .
Этап 4.6.1.4
Перепишем в виде .
Этап 4.6.1.4.1
Вынесем множитель из .
Этап 4.6.1.4.2
Перепишем в виде .
Этап 4.6.1.5
Вынесем члены из-под знака корня.
Этап 4.6.2
Умножим на .
Этап 4.6.3
Упростим .
Этап 4.7
Окончательный ответ является комбинацией обоих решений.
Этап 5
Выпишем каждое выражение, чтобы найти решение для .
Этап 6
Этап 6.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 6.2
Упростим правую часть.
Этап 6.2.1
Найдем значение .
Этап 6.3
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 6.4
Решим относительно .
Этап 6.4.1
Избавимся от скобок.
Этап 6.4.2
Избавимся от скобок.
Этап 6.4.3
Вычтем из .
Этап 6.5
Найдем период .
Этап 6.5.1
Период функции можно вычислить по формуле .
Этап 6.5.2
Заменим на в формуле периода.
Этап 6.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 6.5.4
Разделим на .
Этап 6.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 7
Этап 7.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 7.2
Упростим правую часть.
Этап 7.2.1
Найдем значение .
Этап 7.3
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 7.4
Решим относительно .
Этап 7.4.1
Избавимся от скобок.
Этап 7.4.2
Избавимся от скобок.
Этап 7.4.3
Добавим и .
Этап 7.5
Найдем период .
Этап 7.5.1
Период функции можно вычислить по формуле .
Этап 7.5.2
Заменим на в формуле периода.
Этап 7.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 7.5.4
Разделим на .
Этап 7.6
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Этап 7.6.1
Добавим к , чтобы найти положительный угол.
Этап 7.6.2
Вычтем из .
Этап 7.6.3
Перечислим новые углы.
Этап 7.7
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 8
Перечислим все решения.
, для любого целого