Основы мат. анализа Примеры

Этап 1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Выразим через синусы и косинусы.
Этап 1.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Применим свойство дистрибутивности.
Этап 1.1.2.2
Применим свойство дистрибутивности.
Этап 1.1.2.3
Применим свойство дистрибутивности.
Этап 1.1.3
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.3.1.1
Сократим общий множитель.
Этап 1.1.3.1.2
Перепишем это выражение.
Этап 1.1.3.2
Объединим и .
Этап 1.1.3.3
Перенесем влево от .
Этап 1.1.3.4
Вынесем знак минуса перед дробью.
Этап 1.1.3.5
Умножим на .
Этап 1.1.3.6
Умножим на .
Этап 1.1.4
Переведем в .
Этап 2
Разделим каждый член уравнения на .
Этап 3
Переведем в .
Этап 4
Разделим дроби.
Этап 5
Выразим через синусы и косинусы.
Этап 6
Перепишем в виде произведения.
Этап 7
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 7.1
Умножим на .
Этап 7.2
Разделим на .
Этап 8
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 8.1
Применим правило степени для объединения показателей.
Этап 8.2
Добавим и .
Этап 9
Вынесем множитель из .
Этап 10
Разделим дроби.
Этап 11
Переведем в .
Этап 12
Переведем в .
Этап 13
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 13.1
Сократим общий множитель.
Этап 13.2
Перепишем это выражение.
Этап 14
Разделим дроби.
Этап 15
Переведем в .
Этап 16
Разделим на .
Этап 17
Разделим дроби.
Этап 18
Переведем в .
Этап 19
Разделим на .
Этап 20
Умножим на .
Этап 21
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 21.1
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 21.1.1
Сгруппируем первые два члена и последние два члена.
Этап 21.1.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 21.2
Разложим многочлен, вынеся наибольший общий делитель .
Этап 22
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 23
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 23.1
Приравняем к .
Этап 23.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 23.2.1
Вычтем из обеих частей уравнения.
Этап 23.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 23.2.2.1
Разделим каждый член на .
Этап 23.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 23.2.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 23.2.2.2.2
Разделим на .
Этап 23.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 23.2.2.3.1
Разделим на .
Этап 23.2.3
Применим обратный секанс к обеим частям уравнения, чтобы извлечь из-под знака секанса.
Этап 23.2.4
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 23.2.4.1
Точное значение : .
Этап 23.2.5
Функция секанса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 23.2.6
Вычтем из .
Этап 23.2.7
Найдем период .
Нажмите для увеличения количества этапов...
Этап 23.2.7.1
Период функции можно вычислить по формуле .
Этап 23.2.7.2
Заменим на в формуле периода.
Этап 23.2.7.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 23.2.7.4
Разделим на .
Этап 23.2.8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 24
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 24.1
Приравняем к .
Этап 24.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 24.2.1
Вычтем из обеих частей уравнения.
Этап 24.2.2
Возьмем обратный тангенс обеих частей уравнения, чтобы извлечь из тангенса.
Этап 24.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 24.2.3.1
Точное значение : .
Этап 24.2.4
Функция тангенса отрицательна во втором и четвертом квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение в третьем квадранте.
Этап 24.2.5
Упростим выражение, чтобы найти второе решение.
Нажмите для увеличения количества этапов...
Этап 24.2.5.1
Добавим к .
Этап 24.2.5.2
Результирующий угол является положительным и отличается от на полный оборот.
Этап 24.2.6
Найдем период .
Нажмите для увеличения количества этапов...
Этап 24.2.6.1
Период функции можно вычислить по формуле .
Этап 24.2.6.2
Заменим на в формуле периода.
Этап 24.2.6.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 24.2.6.4
Разделим на .
Этап 24.2.7
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Нажмите для увеличения количества этапов...
Этап 24.2.7.1
Добавим к , чтобы найти положительный угол.
Этап 24.2.7.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 24.2.7.3
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 24.2.7.3.1
Объединим и .
Этап 24.2.7.3.2
Объединим числители над общим знаменателем.
Этап 24.2.7.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 24.2.7.4.1
Перенесем влево от .
Этап 24.2.7.4.2
Вычтем из .
Этап 24.2.7.5
Перечислим новые углы.
Этап 24.2.8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 25
Окончательным решением являются все значения, при которых верно.
, для любого целого
Этап 26
Объединим и в .
, для любого целого