Основы мат. анализа Примеры

Этап 1
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.1
Разделим каждый член на .
Этап 1.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.1.1
Сократим общий множитель.
Этап 1.2.1.2
Перепишем это выражение.
Этап 1.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Выразим через синусы и косинусы.
Этап 1.3.2
Умножим на обратную дробь, чтобы разделить на .
Этап 1.3.3
Запишем в виде дроби со знаменателем .
Этап 1.3.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.3.4.1
Сократим общий множитель.
Этап 1.3.4.2
Перепишем это выражение.
Этап 2
Перепишем уравнение в виде .
Этап 3
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 4
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.1
Точное значение : .
Этап 5
Приравняем числитель к нулю.
Этап 6
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 7
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 7.1
Умножим обе части уравнения на .
Этап 7.2
Упростим обе части уравнения.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 7.2.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.2.1.1.1
Сократим общий множитель.
Этап 7.2.1.1.2
Перепишем это выражение.
Этап 7.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 7.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 7.2.2.1.1
Вычтем из .
Этап 7.2.2.1.2
Умножим на .
Этап 8
Найдем период .
Нажмите для увеличения количества этапов...
Этап 8.1
Период функции можно вычислить по формуле .
Этап 8.2
Заменим на в формуле периода.
Этап 8.3
приблизительно равно . Это положительное число, поэтому вычтем абсолютное значение.
Этап 8.4
Умножим числитель на величину, обратную знаменателю.
Этап 8.5
Умножим на .
Этап 9
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Этап 10
Объединим ответы.
, для любого целого