Введите задачу...
Основы мат. анализа Примеры
Этап 1
Перепишем в виде .
Этап 2
Перепишем в виде степенного выражения.
Этап 3
Подставим вместо .
Этап 4
Этап 4.1
Возведем в степень .
Этап 4.2
Перенесем влево от .
Этап 5
Этап 5.1
Вычтем из обеих частей уравнения.
Этап 5.2
Разложим на множители, используя метод группировки.
Этап 5.2.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 5.2.2
Запишем разложение на множители, используя данные целые числа.
Этап 5.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5.4
Приравняем к , затем решим относительно .
Этап 5.4.1
Приравняем к .
Этап 5.4.2
Добавим к обеим частям уравнения.
Этап 5.5
Приравняем к , затем решим относительно .
Этап 5.5.1
Приравняем к .
Этап 5.5.2
Вычтем из обеих частей уравнения.
Этап 5.6
Окончательным решением являются все значения, при которых верно.
Этап 6
Подставим вместо в .
Этап 7
Этап 7.1
Перепишем уравнение в виде .
Этап 7.2
Сформируем в уравнении эквивалентные выражения с одинаковыми основаниями.
Этап 7.3
Поскольку основания одинаковы, два выражения равны только в том случае, если равны экспоненты.
Этап 8
Подставим вместо в .
Этап 9
Этап 9.1
Перепишем уравнение в виде .
Этап 9.2
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 9.3
Уравнение невозможно решить, так как выражение не определено.
Неопределенные
Этап 9.4
Нет решения для
Нет решения
Нет решения
Этап 10
Перечислим решения, делающие уравнение истинным.