Основы мат. анализа Примеры

Risolvere per x логарифм по основанию 2 от (x-1)^3+ логарифм по основанию 2 от 4=5
Этап 1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.1
Используем свойства произведения логарифмов: .
Этап 1.2
Перенесем влево от .
Этап 2
Перепишем в экспоненциальной форме, используя определение логарифма. Если и  — положительные вещественные числа и , то эквивалентно .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Перепишем уравнение в виде .
Этап 3.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Разделим каждый член на .
Этап 3.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1
Сократим общий множитель.
Этап 3.2.2.1.2
Разделим на .
Этап 3.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.3.1
Возведем в степень .
Этап 3.2.3.2
Разделим на .
Этап 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 3.4
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Перепишем в виде .
Этап 3.4.2
Вынесем члены из-под знака корня, предполагая, что это вещественные числа.
Этап 3.5
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.5.1
Добавим к обеим частям уравнения.
Этап 3.5.2
Добавим и .