Основы мат. анализа Примеры

Этап 1
Применим правило умножения к .
Этап 2
Единица в любой степени равна единице.
Этап 3
Перенесем в числитель, используя правило отрицательных степеней .
Этап 4
Сформируем в уравнении эквивалентные выражения с одинаковыми основаниями.
Этап 5
Поскольку основания одинаковы, два выражения равны только в том случае, если равны экспоненты.
Этап 6
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 6.1.1
Умножим .
Нажмите для увеличения количества этапов...
Этап 6.1.1.1
Умножим на .
Этап 6.1.1.2
Объединим и .
Этап 6.1.2
Вынесем знак минуса перед дробью.
Этап 6.2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 6.2.2
НОК единицы и любого выражения есть это выражение.
Этап 6.3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 6.3.1
Умножим каждый член на .
Этап 6.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.3.2.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 6.3.2.1.2
Сократим общий множитель.
Этап 6.3.2.1.3
Перепишем это выражение.
Этап 6.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.3.1
Умножим на .
Этап 6.4
Перепишем уравнение в виде .