Введите задачу...
Основы мат. анализа Примеры
Этап 1
Этап 1.1
Разделим каждый член на .
Этап 1.2
Упростим левую часть.
Этап 1.2.1
Сократим общий множитель .
Этап 1.2.1.1
Сократим общий множитель.
Этап 1.2.1.2
Перепишем это выражение.
Этап 1.2.2
Сократим общий множитель .
Этап 1.2.2.1
Сократим общий множитель.
Этап 1.2.2.2
Разделим на .
Этап 1.3
Упростим правую часть.
Этап 1.3.1
Сократим общий множитель .
Этап 1.3.1.1
Сократим общий множитель.
Этап 1.3.1.2
Перепишем это выражение.
Этап 1.3.2
Умножим на .
Этап 1.3.3
Объединим и упростим знаменатель.
Этап 1.3.3.1
Умножим на .
Этап 1.3.3.2
Возведем в степень .
Этап 1.3.3.3
Возведем в степень .
Этап 1.3.3.4
Применим правило степени для объединения показателей.
Этап 1.3.3.5
Добавим и .
Этап 1.3.3.6
Перепишем в виде .
Этап 1.3.3.6.1
С помощью запишем в виде .
Этап 1.3.3.6.2
Применим правило степени и перемножим показатели, .
Этап 1.3.3.6.3
Объединим и .
Этап 1.3.3.6.4
Сократим общий множитель .
Этап 1.3.3.6.4.1
Сократим общий множитель.
Этап 1.3.3.6.4.2
Перепишем это выражение.
Этап 1.3.3.6.5
Найдем экспоненту.
Этап 2
Возьмем обратный тангенс обеих частей уравнения, чтобы извлечь из тангенса.
Этап 3
Этап 3.1
Точное значение : .
Этап 4
Функция тангенса положительна в первом и третьем квадрантах. Для нахождения второго решения прибавим угол приведения из и найдем решение в четвертом квадранте.
Этап 5
Этап 5.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5.2
Объединим дроби.
Этап 5.2.1
Объединим и .
Этап 5.2.2
Объединим числители над общим знаменателем.
Этап 5.3
Упростим числитель.
Этап 5.3.1
Перенесем влево от .
Этап 5.3.2
Добавим и .
Этап 6
Этап 6.1
Период функции можно вычислить по формуле .
Этап 6.2
Заменим на в формуле периода.
Этап 6.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 6.4
Разделим на .
Этап 7
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Этап 8
Объединим ответы.
, для любого целого