Основы мат. анализа Примеры

Этап 1
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Вычтем из .
Этап 2
Вычтем из обеих частей уравнения.
Этап 3
Вычтем из .
Этап 4
Разложим на множители, используя теорему о рациональных корнях.
Нажмите для увеличения количества этапов...
Этап 4.1
Если у многочленной функции целые коэффициенты, то каждый рациональный ноль будет иметь вид , где  — делитель константы, а  — делитель старшего коэффициента.
Этап 4.2
Найдем все комбинации . Это ― возможные корни многочлена.
Этап 4.3
Подставим и упростим выражение. В этом случае выражение равно , поэтому является корнем многочлена.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Подставим в многочлен.
Этап 4.3.2
Возведем в степень .
Этап 4.3.3
Умножим на .
Этап 4.3.4
Возведем в степень .
Этап 4.3.5
Умножим на .
Этап 4.3.6
Добавим и .
Этап 4.3.7
Умножим на .
Этап 4.3.8
Вычтем из .
Этап 4.3.9
Добавим и .
Этап 4.4
Поскольку  — известный корень, разделим многочлен на , чтобы найти частное многочленов. Этот многочлен можно будет использовать, чтобы найти оставшиеся корни.
Этап 4.5
Разделим на .
Нажмите для увеличения количества этапов...
Этап 4.5.1
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
++++
Этап 4.5.2
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
++++
Этап 4.5.3
Умножим новое частное на делитель.
++++
++
Этап 4.5.4
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
++++
--
Этап 4.5.5
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
++++
--
+
Этап 4.5.6
Вынесем следующие члены из исходного делимого в текущее делимое.
++++
--
++
Этап 4.5.7
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
+
++++
--
++
Этап 4.5.8
Умножим новое частное на делитель.
+
++++
--
++
++
Этап 4.5.9
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
+
++++
--
++
--
Этап 4.5.10
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
+
++++
--
++
--
+
Этап 4.5.11
Вынесем следующие члены из исходного делимого в текущее делимое.
+
++++
--
++
--
++
Этап 4.5.12
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
++
++++
--
++
--
++
Этап 4.5.13
Умножим новое частное на делитель.
++
++++
--
++
--
++
++
Этап 4.5.14
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
++
++++
--
++
--
++
--
Этап 4.5.15
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
++
++++
--
++
--
++
--
Этап 4.5.16
Поскольку остаток равен , окончательным ответом является частное.
Этап 4.6
Запишем в виде набора множителей.
Этап 5
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Приравняем к .
Этап 6.2
Вычтем из обеих частей уравнения.
Этап 7
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 7.1
Приравняем к .
Этап 7.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 7.2.1
Используем формулу для нахождения корней квадратного уравнения.
Этап 7.2.2
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 7.2.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 7.2.3.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 7.2.3.1.1
Возведем в степень .
Этап 7.2.3.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 7.2.3.1.2.1
Умножим на .
Этап 7.2.3.1.2.2
Умножим на .
Этап 7.2.3.1.3
Вычтем из .
Этап 7.2.3.1.4
Перепишем в виде .
Этап 7.2.3.1.5
Перепишем в виде .
Этап 7.2.3.1.6
Перепишем в виде .
Этап 7.2.3.2
Умножим на .
Этап 7.2.4
Окончательный ответ является комбинацией обоих решений.
Этап 8
Окончательным решением являются все значения, при которых верно.