Основы мат. анализа Примеры

Risolvere per y натуральный логарифм -2y+5- натуральный логарифм y+4 = натуральный логарифм -11y-2
Этап 1
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 2
Чтобы уравнение было равносильным, аргументы логарифмов с обеих сторон уравнения должны быть равными.
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 3.1.2
Избавимся от скобок.
Этап 3.1.3
НОК единицы и любого выражения есть это выражение.
Этап 3.2
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Умножим каждый член на .
Этап 3.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1
Сократим общий множитель.
Этап 3.2.2.1.2
Перепишем это выражение.
Этап 3.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.3.1.1
Применим свойство дистрибутивности.
Этап 3.2.3.1.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 3.2.3.1.2.1
Перенесем .
Этап 3.2.3.1.2.2
Умножим на .
Этап 3.2.3.1.3
Умножим на .
Этап 3.2.3.1.4
Применим свойство дистрибутивности.
Этап 3.2.3.1.5
Умножим на .
Этап 3.2.3.2
Вычтем из .
Этап 3.3
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 3.3.2
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Добавим к обеим частям уравнения.
Этап 3.3.2.2
Добавим и .
Этап 3.3.3
Перенесем все члены в левую часть уравнения и упростим.
Нажмите для увеличения количества этапов...
Этап 3.3.3.1
Вычтем из обеих частей уравнения.
Этап 3.3.3.2
Вычтем из .
Этап 3.3.4
Используем формулу для нахождения корней квадратного уравнения.
Этап 3.3.5
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 3.3.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.3.6.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 3.3.6.1.1
Возведем в степень .
Этап 3.3.6.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.3.6.1.2.1
Умножим на .
Этап 3.3.6.1.2.2
Умножим на .
Этап 3.3.6.1.3
Вычтем из .
Этап 3.3.6.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 3.3.6.1.4.1
Вынесем множитель из .
Этап 3.3.6.1.4.2
Перепишем в виде .
Этап 3.3.6.1.5
Вынесем члены из-под знака корня.
Этап 3.3.6.2
Умножим на .
Этап 3.3.6.3
Упростим .
Этап 3.3.6.4
Вынесем знак минуса перед дробью.
Этап 3.3.7
Окончательный ответ является комбинацией обоих решений.
Этап 4
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: