Основы мат. анализа Примеры

Risolvere per x логарифм 6x+9=1+ логарифм x-1
Этап 1
Перенесем все члены с логарифмами в левую часть уравнения.
Этап 2
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 3
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 3.1
Вынесем множитель из .
Этап 3.2
Вынесем множитель из .
Этап 3.3
Вынесем множитель из .
Этап 4
Перепишем в экспоненциальной форме, используя определение логарифма. Если и являются положительными вещественными числами и , то эквивалентно .
Этап 5
С помощью перекрестного умножения избавимся от дроби.
Этап 6
Упростим .
Нажмите для увеличения количества этапов...
Этап 6.1
Применим свойство дистрибутивности.
Этап 6.2
Умножим на .
Этап 7
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 7.1
Вычтем из обеих частей уравнения.
Этап 7.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Применим свойство дистрибутивности.
Этап 7.2.2
Умножим на .
Этап 7.2.3
Умножим на .
Этап 7.3
Вычтем из .
Этап 8
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 8.1
Вычтем из обеих частей уравнения.
Этап 8.2
Вычтем из .
Этап 9
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 9.1
Разделим каждый член на .
Этап 9.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 9.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 9.2.1.1
Сократим общий множитель.
Этап 9.2.1.2
Разделим на .
Этап 9.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 9.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 10
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Форма смешанных чисел: